The secant method for nondifferentiable operators

被引:40
|
作者
Hernández, MA [1 ]
Rubio, MJ [1 ]
机构
[1] Univ La Rioja, Dept Math & Computat, Logrono 26004, Spain
关键词
the Secant method; recurrence relations; nondifferentiable operator;
D O I
10.1016/S0893-9659(01)00150-1
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we use the Secant method to find a solution of a nonlinear operator equation in Banach spaces. A semilocal convergence result is obtained. For that, we consider a condition for divided differences which generalizes the usual ones, i.e., Lipschitz continuous or Holder continuous conditions. Besides, we apply our results to approximate the solution of a nonlinear equation. (C) 2002 Elsevier Science Ltd. All rights reserved.
引用
收藏
页码:395 / 399
页数:5
相关论文
共 50 条
  • [41] SECANT METHOD IN BANACH-SPACES
    SOLAK, W
    STRUS, M
    COMPUTING, 1976, 16 (03) : 201 - 209
  • [42] EXACT ORDER OF CONVERGENCE OF THE SECANT METHOD
    RAYDAN, M
    JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 1993, 78 (03) : 541 - 551
  • [43] A modification of Newton's method for nondifferentiable equations
    Hernández, MA
    Rubio, MJ
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2004, 164 : 409 - 417
  • [44] Chebyshev-Secant-type Methods for Non-differentiable Operators
    Argyros, I. K.
    Ezquerro, J. A.
    Gutierrez, J. M.
    Hernandez, M. A.
    Hilout, S.
    MILAN JOURNAL OF MATHEMATICS, 2013, 81 (01) : 25 - 35
  • [45] A CONSTRAINT LINEARIZATION METHOD FOR NONDIFFERENTIABLE CONVEX MINIMIZATION
    KIWIEL, KC
    NUMERISCHE MATHEMATIK, 1987, 51 (04) : 395 - 414
  • [47] A variable target value method for nondifferentiable optimization
    Sherali, HD
    Choi, G
    Tuncbilek, CH
    OPERATIONS RESEARCH LETTERS, 2000, 26 (01) : 1 - 8
  • [48] AN IMPROVED SUBGRADIENT METHOD FOR CONSTRAINED NONDIFFERENTIABLE OPTIMIZATION
    KIM, S
    UM, BS
    OPERATIONS RESEARCH LETTERS, 1993, 14 (01) : 61 - 64
  • [49] Chebyshev-Secant-type Methods for Non-differentiable Operators
    I. K. Argyros
    J. A. Ezquerro
    J. M. Gutiérrez
    M. A. Hernández
    S. Hilout
    Milan Journal of Mathematics, 2013, 81 : 25 - 35
  • [50] Newton and Secant Methods for Iterative Remnant Control of Preisach Hysteresis Operators
    Keulen, J. R.
    Jayawardhana, B.
    IEEE CONTROL SYSTEMS LETTERS, 2024, 8 : 1721 - 1726