Assessment of Geoid Models Offshore Western Australia Using In-Situ Measurements

被引:4
|
作者
Deng, Xiaoli [1 ]
Coleman, Richard [2 ,3 ,4 ]
Featherstone, Will E. [5 ,6 ]
Ridgway, Ken R. [4 ]
机构
[1] Univ Newcastle, Sch Engn, Ctr Climate Impact Management, Callaghan, NSW 2308, Australia
[2] Univ Tasmania, Ctr Marine Sci, Hobart, Tas 7001, Australia
[3] Antarctic Climate & Ecosyst Cooperat Res Ctr, Hobart, Tas, Australia
[4] CSIRO Marine & Atmospher Res, Hobart, Tas 7001, Australia
[5] Curtin Univ Technol, Western Australian Ctr Geodesy, Perth, WA 6845, Australia
[6] Curtin Univ Technol, Inst Geosci Res, Perth, WA 6845, Australia
基金
澳大利亚研究理事会;
关键词
Global geopotential model; AUSGeoid98; mean sea surface; dynamic ocean topography; CSIRO Atlas of Regional Seas (CARS); GEOPOTENTIAL MODELS; LEEUWIN CURRENT; AUSGEOID98;
D O I
10.2112/07-0972.1
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
In Western Australia, coastal dynamics are influenced by a major ocean boundary current system, the Leeuwin Current, which is characterised by mesoscale features. To fully understand the Leeuwin Current using satellite altimeter measurements, we must have a precise (1-2 cm) and full-spatial-scale (<100 km) geoid model. This paper focuses on a comparison between two mean dynamic ocean topography models derived from independent hydrographic climatologies, and an altimeter-observed mean sea surface referenced to recently released geoid models offshore of Western Australia (20 degrees S to 45 degrees S, 108 degrees E to 130 degrees E). The geoid models used include combined global geopotential models from the GRACE satellite mission and AUSGeoid.98. The estimated mean dynamic ocean topography models are compared with independent dynamic ocean topography from CSIRO's Atlas of Regional Seas (CARS) climatology. The results show that the EIGEN-GL04C and GGM02C + EGM96 global geopotential models to degree and order 360 give the best comparisons against CARS in the Leeuwin Current region, suggesting that they should be used in the future for computing ocean transport, surface current velocities, and dynamic topography, and be used as a reference field for future computations of regional marine geoid models.
引用
收藏
页码:581 / 588
页数:8
相关论文
共 50 条
  • [31] A controlled CO2 release experiment in a fault zone at the In-Situ Laboratory in Western Australia
    Michael, Karsten
    Avijegon, Arsham
    Ricard, Ludovic
    Myers, Matt
    Tertyshnikov, Konstantin
    Pevzner, Roman
    Strand, Julian
    Hortle, Allison
    Stalker, Linda
    Pervukhina, Marina
    Harris, Brett
    Feitz, Andrew
    Pejcic, Bobby
    Larcher, Alf
    Rachakonda, Praveen
    Freifeld, Barry
    Woitt, Mark
    Langhi, Laurent
    Dance, Tess
    Myers, Jo
    Roberts, Jennifer
    Saygin, Erdinc
    White, Cameron
    Seyyedi, Mojtaba
    INTERNATIONAL JOURNAL OF GREENHOUSE GAS CONTROL, 2020, 99
  • [32] Vertical transport of water in isolated convective clouds in the interior western United States as observed using airborne in-situ measurements
    Qin, Zhizhi
    Yang, Jing
    Yang, Tianqi
    Jing, Xiaoqin
    Lu, Chunsong
    Wang, Yonggang
    Yin, Yan
    Zhang, Qilin
    Chen, Baojun
    ATMOSPHERIC RESEARCH, 2023, 285
  • [33] Calculating Ionizing Doses in Geosynchronous Orbit from In-situ Particle Measurements and Models
    Chen, Yue
    Larsen, Brian A.
    Henderson, Michael G.
    2020 IEEE AEROSPACE CONFERENCE (AEROCONF 2020), 2020,
  • [34] In-situ stress measurements and regional stress field assessment of the Beishan area, China
    Zhao, X. G.
    Wang, J.
    Cai, M.
    Ma, L. K.
    Zong, Z. H.
    Wang, X. Y.
    Su, R.
    Chen, W. M.
    Zhao, H. G.
    Chen, Q. C.
    An, Q. M.
    Qin, X. H.
    Ou, M. Y.
    Zhao, J. S.
    ENGINEERING GEOLOGY, 2013, 163 : 26 - 40
  • [35] Statistical assessment of detection of changes in space debris environment utilizing in-situ measurements
    Furumoto, Masahiro
    Sahara, Hironori
    ACTA ASTRONAUTICA, 2020, 177 (177) : 666 - 672
  • [36] BICHROMATIC PYRO-REFLECTOMETER USING OPTICAL FIBERS FOR IN-SITU MEASUREMENTS
    HERNANDEZ, D
    MILCENT, E
    JOURNAL DE PHYSIQUE III, 1995, 5 (07): : 999 - 1011
  • [37] Measurements of in-situ wave velocities of concrete using transient elastic waves
    Wu, TT
    Tong, JH
    Liu, PL
    REVIEW OF PROGRESS IN QUANTITATIVE NONDESTRUCTIVE EVALUATION, VOLS 19A AND 19B, 2000, 509 : 1693 - 1700
  • [38] Local geoid model of the Western Desert in Egypt using terrestrial gravity data and global geopotential models
    Elwan M.A.
    Helaly A.
    Zharan K.
    Issawy E.
    El-Gawad A.A.
    Arabian Journal of Geosciences, 2021, 14 (15)
  • [39] Measurements of in-situ SOA formation and chemistry using an oxidation flow reactor
    Palm, Brett
    Campuzano-Jost, Pedro
    Day, Douglas
    Hu, Weiwei
    Ortega, Amber
    de Sa, Suzane
    Seco, Roger
    Park, Jeong-Hoo
    Guenther, Alex
    Kim, Saewung
    Brito, Joel
    Wurm, Florian
    Artaxo, Paulo
    Thalman, Ryan
    Wang, Jian
    Kaser, Lisa
    Jud, Werner
    Karl, Thomas
    Hansel, Armin
    Fry, Julianne
    Brown, Steven
    Draper, Danielle
    Zarzana, Kyle
    Dube, William
    Wagner, Nick
    Hacker, Lina
    Kiendler-Scharr, Astrid
    Yee, Lindsay
    Isaacman, Gabriel
    Goldstein, Allen
    Souza, Rodrigo
    Manzi, Antonio
    Vega, Oscar
    Tota, Julio
    Newburn, Matt
    Alexander, M. Lizabeth
    Martin, Scot
    Brune, William
    Jimenez, Jose
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2015, 249
  • [40] The extreme precipitation events of August 2018 and 2019 over southern Western Ghats, India: A microphysical analysis using in-situ measurements
    Sumesh, R. K.
    Resmi, E. A.
    Unnikrishnan, C. K.
    Jash, Dharmadas
    Padmalal, D.
    ATMOSPHERIC RESEARCH, 2022, 277