SketchFormer: transformer-based approach for sketch recognition using vector images

被引:3
|
作者
Parihar, Anil Singh [1 ]
Jain, Gaurav [1 ]
Chopra, Shivang [1 ]
Chopra, Suransh [1 ]
机构
[1] Delhi Technol Univ, Machine Learning Res Lab, Dept Comp Sci & Engn, New Delhi 110042, India
关键词
Sketch recognition; Transformers; Vector images; Deep learning; ALGORITHM;
D O I
10.1007/s11042-020-09837-y
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Sketches have been employed since the ancient era of cave paintings for simple illustrations to represent real-world entities and communication. The abstract nature and varied artistic styling make automatic recognition of these drawings more challenging than other areas of image classification. Moreover, the representation of sketches as a sequence of strokes instead of raster images introduces them at the correct abstract level. However, dealing with images as a sequence of small information makes it challenging. In this paper, we propose a Transformer-based network, dubbed as AttentiveNet, for sketch recognition. This architecture incorporates ordinal information to perform the classification task in real-time through vector images. We employ the proposed model to isolate the discriminating strokes of each doodle using the attention mechanism of Transformers and perform an in-depth qualitative analysis of the isolated strokes for classification of the sketch. Experimental evaluation validates that the proposed network performs favorably against state-of-the-art techniques.
引用
收藏
页码:9075 / 9091
页数:17
相关论文
共 50 条
  • [21] Transformer-based approach for joint handwriting and named entity recognition in historical document
    Rouhou, Ahmed Cheikh
    Dhiaf, Marwa
    Kessentini, Yousri
    Ben Salem, Sinda
    PATTERN RECOGNITION LETTERS, 2022, 155 : 128 - 134
  • [22] Transformer-Based Approach to Melanoma Detection
    Cirrincione, Giansalvo
    Cannata, Sergio
    Cicceri, Giovanni
    Prinzi, Francesco
    Currieri, Tiziana
    Lovino, Marta
    Militello, Carmelo
    Pasero, Eros
    Vitabile, Salvatore
    SENSORS, 2023, 23 (12)
  • [23] A Transformer-Based Framework for Scene Text Recognition
    Selvam, Prabu
    Koilraj, Joseph Abraham Sundar
    Tavera Romero, Carlos Andres
    Alharbi, Meshal
    Mehbodniya, Abolfazl
    Webber, Julian L.
    Sengan, Sudhakar
    IEEE ACCESS, 2022, 10 : 100895 - 100910
  • [24] Molecular Descriptors Property Prediction Using Transformer-Based Approach
    Tran, Tuan
    Ekenna, Chinwe
    INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES, 2023, 24 (15)
  • [25] Sketch-Segformer: Transformer-Based Segmentation for Figurative and Creative Sketches
    Zheng, Yixiao
    Xie, Jiyang
    Sain, Aneeshan
    Song, Yi-Zhe
    Ma, Zhanyu
    IEEE TRANSACTIONS ON IMAGE PROCESSING, 2023, 32 : 4595 - 4609
  • [26] A TRANSFORMER-BASED APPROACH FOR METAL 3D PRINTING QUALITY RECOGNITION
    Zhang, Weihao
    Wang, Jiapeng
    Ma, Honglin
    Zhang, Qi
    Fan, Shuqian
    2022 IEEE INTERNATIONAL CONFERENCE ON MULTIMEDIA AND EXPO WORKSHOPS (IEEE ICMEW 2022), 2022,
  • [27] Transformer-based approach to variable typing
    Rey, Charles Arthel
    Danguilan, Jose Lorenzo
    Mendoza, Karl Patrick
    Remolona, Miguel Francisco
    HELIYON, 2023, 9 (10)
  • [28] MusicEmo: transformer-based intelligent approach towards music emotion generation and recognition
    Xin Y.
    Journal of Ambient Intelligence and Humanized Computing, 2024, 15 (08) : 3107 - 3117
  • [29] A Transformer-Based Approach for Efficient Geometric Feature Extraction from Vector Shape Data
    Cui, Longfei
    Niu, Xinyu
    Qian, Haizhong
    Wang, Xiao
    Xu, Junkui
    APPLIED SCIENCES-BASEL, 2025, 15 (05):
  • [30] RM-Transformer: A Transformer-based Model for Mandarin Speech Recognition
    Lu, Xingyu
    Hu, Jianguo
    Li, Shenhao
    Ding, Yanyu
    2022 IEEE 2ND INTERNATIONAL CONFERENCE ON COMPUTER COMMUNICATION AND ARTIFICIAL INTELLIGENCE (CCAI 2022), 2022, : 194 - 198