A new approach for assessing geothermal response to climate change in permafrost regions

被引:15
|
作者
Nishimura, S. [1 ]
Martin, C. J. [1 ]
Jardine, R. J. [1 ]
Fenton, C. H. [1 ]
机构
[1] Univ London Imperial Coll Sci Technol & Med, Dept Civil & Environm Engn, London SW7 2AZ, England
来源
GEOTECHNIQUE | 2009年 / 59卷 / 03期
基金
英国工程与自然科学研究理事会;
关键词
geology; ground freezing; numerical modelling; temperature effects; KUPARUK RIVER-BASIN; ACTIVE-LAYER; N-FACTOR; TEMPERATURES; TERRAIN; ALASKA; MODEL; THAW; AIR;
D O I
10.1680/geot.2009.59.3.213
中图分类号
P5 [地质学];
学科分类号
0709 ; 081803 ;
摘要
Infrastructure in cold regions is vulnerable to the potential degradation of permafrost under a warming climate. Meanwhile, the accumulation of meteorological data and the refinement of AOGCMs in recent years have improved the confidence in future global air temperature predictions. A reliable scheme is now desired that converts these climate predictions into future geocryological predictions relevant to geotechnical engineering and risk assessment. This paper describes a multidisciplinary approach that provides a first estimate of transient ground responses to climate change on a regional basis. The scheme integrates locally adjusted AOGCM climate predictions, regional geological assessments, non-linear thermal finite element analysis and digital elevation models derived from remote sensing data. The practical application of the approach is demonstrated through predictions made of the geocryological changes expected between 1940 and 2059 in a Siberian region. The paper presents results from one sampled area where discontinuous permafrost is present beneath rolling hills terrain. It is shown that elevation, vegetation and local geological variations all affect the development of permafrost, with important implications for infrastructure design and operation. A range of useful geocryological maps can be output from the procedure, including temperature at the active layer base, permafrost table depth, and ground temperature at any desired depth. It is shown that the permafrost model's predictions for present-day conditions agree well with existing geocryological maps. An illustrative example of how simple geohazard maps may be prepared from the output is also provided.
引用
收藏
页码:213 / 227
页数:15
相关论文
共 50 条
  • [21] Effects of climate change, coal mining and grazing on vegetation dynamics in the mountain permafrost regions
    Qi, Xiao-lian
    Xu, Hao-jie
    Chen, Tian
    Shan, Shu-yao
    Chen, Sheng-yun
    ECOLOGICAL INFORMATICS, 2022, 69
  • [22] New approach to climate change
    Pachauri, RK
    ISSUES IN SCIENCE AND TECHNOLOGY, 2002, 19 (01) : 16 - +
  • [23] A conceptual approach for assessing the impact of climate change on groundwater and related surface waters in cold regions (Finland)
    Okkonen, Jarkko
    Jyrkama, Mikko
    Klove, Bjorn
    HYDROGEOLOGY JOURNAL, 2010, 18 (02) : 429 - 439
  • [24] New understanding of the response of permafrost carbon cycling to climate warming
    Ding, Jinzhi
    Wang, Tao
    Wang, Yuyang
    Chen, Fahu
    SCIENCE BULLETIN, 2022, 67 (13) : 1322 - 1325
  • [25] RESPONSE OF MARINE CLIMATE TO FUTURE CLIMATE CHANGE: APPLICATION TO COASTAL REGIONS
    Leake, James
    Wolf, Judith
    Lowe, Jason
    Hall, Jim
    Nicholls, Robert
    COASTAL ENGINEERING 2008, VOLS 1-5, 2009, : 4354 - +
  • [26] CLIMATE CHANGE AND STABILITY OF URBAN INFRASTRUCTURE IN RUSSIAN PERMAFROST REGIONS: PROGNOSTIC ASSESSMENT BASED ON GCM CLIMATE PROJECTIONS
    Shiklomanov, Nikolay I.
    Streletskiy, Dmitry A.
    Swales, Timothy B.
    Kokorev, Vasily A.
    GEOGRAPHICAL REVIEW, 2017, 107 (01) : 125 - 142
  • [27] Projected shifts of wine regions in response to climate change
    Moriondo, M.
    Jones, G. V.
    Bois, B.
    Dibari, C.
    Ferrise, R.
    Trombi, G.
    Bindi, M.
    CLIMATIC CHANGE, 2013, 119 (3-4) : 825 - 839
  • [28] Projected shifts of wine regions in response to climate change
    M. Moriondo
    G. V. Jones
    B. Bois
    C. Dibari
    R. Ferrise
    G. Trombi
    M. Bindi
    Climatic Change, 2013, 119 : 825 - 839
  • [29] Climate change and the permafrost carbon feedback
    Schuur, E. A. G.
    McGuire, A. D.
    Schaedel, C.
    Grosse, G.
    Harden, J. W.
    Hayes, D. J.
    Hugelius, G.
    Koven, C. D.
    Kuhry, P.
    Lawrence, D. M.
    Natali, S. M.
    Olefeldt, D.
    Romanovsky, V. E.
    Schaefer, K.
    Turetsky, M. R.
    Treat, C. C.
    Vonk, J. E.
    NATURE, 2015, 520 (7546) : 171 - 179
  • [30] Climate change and the permafrost carbon feedback
    E. A. G. Schuur
    A. D. McGuire
    C. Schädel
    G. Grosse
    J. W. Harden
    D. J. Hayes
    G. Hugelius
    C. D. Koven
    P. Kuhry
    D. M. Lawrence
    S. M. Natali
    D. Olefeldt
    V. E. Romanovsky
    K. Schaefer
    M. R. Turetsky
    C. C. Treat
    J. E. Vonk
    Nature, 2015, 520 : 171 - 179