Parameter estimation for partially observed nonlinear stochastic system

被引:1
|
作者
Wei, Chao [1 ]
He, Chaobing [1 ]
机构
[1] Anyang Normal Univ, Sch Math & Stat, Anyang 455000, Peoples R China
关键词
nonlinear stochastic system; state estimation equation; parameter estimation; strong consistency; computing science; mathematics; extended Kalman filtering; suboptimal estimation; ASYMPTOTIC-BEHAVIOR; DIFFUSION; MODELS;
D O I
10.1504/IJCSM.2019.098739
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
This paper is concerned with the parameter estimation problem for partially observed nonlinear stochastic system. The suboptimal estimation of the state is obtained by constructing the extended Kalman filtering equation. The likelihood function is provided based on state estimation equation. The strong consistency of the estimator is proved by applying maximal inequality for martingales, Borel-Cantelli lemma and uniform ergodic theorem. An example is provided to verify the effectiveness of the method.
引用
收藏
页码:150 / 159
页数:10
相关论文
共 50 条
  • [41] On parameter estimation of partly observed bilinear discrete-time stochastic systems
    Malyarenko, A.
    Vasiliev, V.
    METRIKA, 2012, 75 (03) : 403 - 424
  • [42] On parameter estimation of partly observed bilinear discrete-time stochastic systems
    A. Malyarenko
    V. Vasiliev
    Metrika, 2012, 75 : 403 - 424
  • [43] Dual estimation of partially observed nonlinear structural systems: A particle filter approach
    Azam, Saeed Eftekhar
    Mariani, Stefano
    MECHANICS RESEARCH COMMUNICATIONS, 2012, 46 : 54 - 61
  • [44] Parameter Estimation for a Bidimensional Partially Observed Ornstein-Uhlenbeck Process with Biological Application
    Favetto, Benjamin
    Samson, Adeline
    SCANDINAVIAN JOURNAL OF STATISTICS, 2010, 37 (02) : 200 - 220
  • [45] BAYESIAN STATIC PARAMETER ESTIMATION FOR PARTIALLY OBSERVED DIFFUSIONS VIA MULTILEVEL MONTE CARLO
    Jasra, Ajay
    Kamatani, Kengo
    Law, Kody
    Zhou, Yan
    SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2018, 40 (02): : A887 - A902
  • [46] Bayesian parameter inference for partially observed stochastic differential equations driven by fractional Brownian motion
    Mohamed Maama
    Ajay Jasra
    Hernando Ombao
    Statistics and Computing, 2023, 33
  • [47] Bayesian parameter inference for partially observed stochastic differential equations driven by fractional Brownian motion
    Maama, Mohamed
    Jasra, Ajay
    Ombao, Hernando
    STATISTICS AND COMPUTING, 2023, 33 (01)
  • [48] Optimal control for estimation in partially observed elliptic and hypoelliptic linear stochastic differential equations
    Quentin Clairon
    Adeline Samson
    Statistical Inference for Stochastic Processes, 2020, 23 : 105 - 127
  • [49] Maximum likelihood estimation of continuous time stochastic volatility models with partially observed GARCH
    Niu, Wei-Fang
    STUDIES IN NONLINEAR DYNAMICS AND ECONOMETRICS, 2013, 17 (04): : 421 - 438
  • [50] Optimal control for estimation in partially observed elliptic and hypoelliptic linear stochastic differential equations
    Clairon, Quentin
    Samson, Adeline
    STATISTICAL INFERENCE FOR STOCHASTIC PROCESSES, 2020, 23 (01) : 105 - 127