Quasilinear Schrodinger equations with unbounded or decaying potentials

被引:8
|
作者
Severo, Uberlandio B. [1 ]
de Carvalho, Gilson M. [1 ]
机构
[1] Univ Fed Paraiba, Dept Matemat, BR-58051900 Joao Pessoa, PB, Brazil
关键词
Quasilinear Schrodinger equations; unbounded or decaying potentials; weighted Orlicz Space; SCALAR FIELD-EQUATIONS; SOLITON-SOLUTIONS; ELLIPTIC-EQUATIONS; PERTURBATION METHOD; POSITIVE SOLUTIONS; RADIAL POTENTIALS; CRITICAL GROWTH; GROUND-STATES; R-N; EXISTENCE;
D O I
10.1002/mana.201600028
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We study the existence of nonnegative and nonzero solutions for the following class of quasilinear Schrodinger equations: {-Delta u + v (vertical bar x vertical bar)u - [Delta(u(2))]u = Q(vertical bar x vertical bar)g(u), x is an element of R-N, u(x) -> 0 as vertical bar x vertical bar -> infinity, where V and Q are potentials that can be singular at the origin, unbounded or vanishing at infinity. In order to prove our existence result we used minimax techniques in a suitable weighted Orlicz space together with regularity arguments and we need to obtain a symmetric criticality type result.
引用
收藏
页码:492 / 517
页数:26
相关论文
共 50 条