共 50 条
Quasilinear Schrodinger equations with unbounded or decaying potentials
被引:8
|作者:
Severo, Uberlandio B.
[1
]
de Carvalho, Gilson M.
[1
]
机构:
[1] Univ Fed Paraiba, Dept Matemat, BR-58051900 Joao Pessoa, PB, Brazil
关键词:
Quasilinear Schrodinger equations;
unbounded or decaying potentials;
weighted Orlicz Space;
SCALAR FIELD-EQUATIONS;
SOLITON-SOLUTIONS;
ELLIPTIC-EQUATIONS;
PERTURBATION METHOD;
POSITIVE SOLUTIONS;
RADIAL POTENTIALS;
CRITICAL GROWTH;
GROUND-STATES;
R-N;
EXISTENCE;
D O I:
10.1002/mana.201600028
中图分类号:
O1 [数学];
学科分类号:
0701 ;
070101 ;
摘要:
We study the existence of nonnegative and nonzero solutions for the following class of quasilinear Schrodinger equations: {-Delta u + v (vertical bar x vertical bar)u - [Delta(u(2))]u = Q(vertical bar x vertical bar)g(u), x is an element of R-N, u(x) -> 0 as vertical bar x vertical bar -> infinity, where V and Q are potentials that can be singular at the origin, unbounded or vanishing at infinity. In order to prove our existence result we used minimax techniques in a suitable weighted Orlicz space together with regularity arguments and we need to obtain a symmetric criticality type result.
引用
收藏
页码:492 / 517
页数:26
相关论文