Metal-CO2 Batteries on the Road: CO2 from Contamination Gas to Energy Source

被引:287
|
作者
Xie, Zhaojun [1 ]
Zhang, Xin [1 ]
Zhang, Zhang [1 ]
Zhou, Zhen [1 ]
机构
[1] Nankai Univ, Tianjin Key Lab Met & Mol Based Mat Chem, Key Lab Adv Energy Mat Chem,Sch Mat Sci & Engn,Na, Minist Educ,Inst New Energy Mat Chem,Collaborat I, Tianjin 300350, Peoples R China
关键词
LITHIUM-AIR BATTERY; CARBON-DIOXIDE; LI-AIR; LI-O-2; BATTERY; ELECTROCHEMICAL REDUCTION; DIMETHYL-SULFOXIDE; DISCHARGE PRODUCTS; OXYGEN BATTERIES; HIGH-PERFORMANCE; CYCLE-LIFE;
D O I
10.1002/adma.201605891
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Rechargeable nonaqueous metal-air batteries attract much attention for their high theoretical energy density, especially in the last decade. However, most reported metal-air batteries are actually operated in a pure O-2 atmosphere, while CO2 and moisture in ambient air can significantly impact the electrochemical performance of metal-O-2 batteries. In the study of CO2 contamination on metal-O-2 batteries, it has been gradually found that CO2 can be utilized as the reactant gas alone; namely, metal-CO2 batteries can work. On the other hand, investigations on CO2 fixation are in focus due to the potential threat of CO2 on global climate change, especially for its steadily increasing concentration in the atmosphere. The exploitation of CO2 in energy storage systems represents an alternative approach towards clean recycling and utilization of CO2. Here, the aim is to provide a timely summary of recent achievements in metal-CO2 batteries, and inspire new ideas for new energy storage systems. Moreover, critical issues associated with reaction mechanisms and potential directions for future studies are discussed.
引用
收藏
页数:9
相关论文
共 50 条
  • [31] SOURCE FUNCTIONS OF CO2 AND FUTURE CO2 BURDEN IN ATMOSPHERE
    ZIMEN, KE
    OFFERMANN, P
    HARTMANN, G
    [J]. ZEITSCHRIFT FUR NATURFORSCHUNG SECTION A-A JOURNAL OF PHYSICAL SCIENCES, 1977, 32 (12): : 1544 - 1554
  • [32] CO Gas Production by Molten Salt Electrolysis from CO2 Gas
    Matsuura, Fumiya
    Wakamatsu, Takafumi
    Natsui, Shungo
    Kikuchi, Tatsuya
    Suzuki, Ryosuke O.
    [J]. ISIJ INTERNATIONAL, 2015, 55 (02) : 404 - 408
  • [33] The Net CO2 Reduction Potential from Active HVAC Indoor CO2 Mitigation, Reducing Source Energy Usage, in Comparison with CO2 Mitigation Directly from Outdoor Air
    Leidel, James
    [J]. ASHRAE TRANSACTIONS 2020, VOL 126, 2020, 126 : 435 - 443
  • [34] Liquid Metal-CO2 Battery Bridged Intermittent Energy Conversion and O2 Production in the Martian Atmosphere
    Shi, Hao
    Fang, Zhouyu
    Cai, Muya
    Liu, Minghao
    Wang, Peilin
    Du, Kaifa
    Yin, Huayi
    Wang, Dihua
    [J]. ACS SUSTAINABLE CHEMISTRY & ENGINEERING, 2023, 11 (24) : 9235 - 9242
  • [35] THE RESPIRATORY SOURCE OF CO2
    FARRAR, JF
    [J]. PLANT CELL AND ENVIRONMENT, 1985, 8 (06): : 427 - 438
  • [36] PRIME SOURCE OF CO2
    RICHTER, HL
    [J]. CHEMICAL & ENGINEERING NEWS, 1991, 69 (20) : 2 - 2
  • [37] CO2 REMOVAL FROM SYNTHESIS GAS
    TRUBY, HA
    LEWIS, JL
    [J]. ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 1974, : 11 - 11
  • [38] Exceptional gravimetric and volumetric CO2 uptake in a palladated NbO-type MOF utilizing cooperative acidic and basic, metal-CO2 interactions
    Spanopoulos, I.
    Bratsos, I.
    Tampaxis, C.
    Vourloumis, D.
    Klontzas, E.
    Froudakis, G. E.
    Charalambopoulou, G.
    Steriotis, T. A.
    Trikalitis, P. N.
    [J]. CHEMICAL COMMUNICATIONS, 2016, 52 (69) : 10559 - 10562
  • [39] Identification and Quantification of CO2 Solidification in Cryogenic CO2 Capture from Natural Gas
    Babar, M.
    Bustam, M. A.
    Ali, A.
    Maulud, A. S.
    [J]. INTERNATIONAL JOURNAL OF AUTOMOTIVE AND MECHANICAL ENGINEERING, 2018, 15 (02) : 5367 - 5376
  • [40] CO2 capture from natural gas combined cycles by CO2 selective membranes
    Turi, D. M.
    Ho, M.
    Ferrari, M. C.
    Chiesa, P.
    Wiley, D. E.
    Romano, M. C.
    [J]. INTERNATIONAL JOURNAL OF GREENHOUSE GAS CONTROL, 2017, 61 : 168 - 183