Two-Weight Norm, Poincare, Sobolev and Stein Weiss Inequalities on Morrey Spaces

被引:14
|
作者
Ho, Kwok-Pun [1 ]
机构
[1] Educ Univ Hong Kong, Dept Math & Informat Technol, 10 Lo Ping Rd, Tai Po, Hong Kong, Peoples R China
关键词
Two-weight norm inequality; Poincare inequality; Sobolev inequality; Stein-Weiss inequality; Hardy inequality; Rellich inequality; Morrey space; singular integral operator; fractional integral operator; SINGULAR INTEGRAL-OPERATORS; DEGENERATE ELLIPTIC-EQUATIONS; FRACTIONAL INTEGRALS; MAXIMAL OPERATORS; WEIGHTED INEQUALITIES; UNIQUE CONTINUATION; VARIABLE EXPONENTS; SHARP; 2-WEIGHT;
D O I
10.4171/PRIMS/53-1-4
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We establish two-weight norm inequalities for singular integral operators and fractional integral operators on Morrey spaces. As a consequence of these inequalities, we obtain two-weight Poincare and Sobolev inequalities on Morrey spaces. Moreover, we also establish the Stein-Weiss inequality, the Hardy inequality and the Rellich inequality on Morrey spaces.
引用
收藏
页码:119 / 139
页数:21
相关论文
共 50 条
  • [31] POINCARE INEQUALITIES IN WEIGHTED SOBOLEV SPACES
    王万义
    孙炯
    郑志明
    [J]. Applied Mathematics and Mechanics(English Edition), 2006, (01) : 125 - 132
  • [32] POINCARE INEQUALITIES IN WEIGHTED SOBOLEV SPACES
    LACAZE, J
    [J]. COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 1984, 299 (09): : 411 - 414
  • [33] Norm Inequalities in Generalized Morrey Spaces
    Justin Feuto
    [J]. Journal of Fourier Analysis and Applications, 2014, 20 : 896 - 909
  • [34] Two-weight norm inequalities for product fractional integral operators
    Tanaka, Hitoshi
    [J]. BULLETIN DES SCIENCES MATHEMATIQUES, 2021, 166
  • [35] Poincare inequalities in weighted Sobolev spaces
    Wang, WY
    Sun, J
    Zhi, ZM
    [J]. APPLIED MATHEMATICS AND MECHANICS-ENGLISH EDITION, 2006, 27 (01) : 125 - 132
  • [36] TWO-WEIGHT NORM INEQUALITIES FOR VECTOR-VALUED OPERATORS
    Cascante, Carme
    Ortega, Joaquin M.
    [J]. MATHEMATIKA, 2017, 63 (01) : 72 - 91
  • [37] Two-Weight Inequalities for Multilinear Commutators in Product Spaces
    Emil Airta
    Kangwei Li
    Henri Martikainen
    [J]. Potential Analysis, 2023, 59 : 1745 - 1792
  • [38] Two-Weight Inequalities for Multilinear Commutators in Product Spaces
    Airta, Emil
    Li, Kangwei
    Martikainen, Henri
    [J]. POTENTIAL ANALYSIS, 2023, 59 (04) : 1745 - 1792
  • [39] A two-weight Sobolev inequality for Carnot-Caratheodory spaces
    Alberico, Angela
    Di Gironimo, Patrizia
    [J]. RICERCHE DI MATEMATICA, 2022, 71 (02) : 493 - 509
  • [40] Fractional integrals, potential operators and two-weight, weak type norm inequalities on spaces of homogeneous type
    Martell, JM
    [J]. JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2004, 294 (01) : 223 - 236