New methods for simulation of fractional Brownian motion

被引:51
|
作者
Yin, ZM [1 ]
机构
[1] UNIV VICTORIA,SCH EARTH & OCEAN SCI,VICTORIA,BC V8W 2Y2,CANADA
基金
加拿大自然科学与工程研究理事会;
关键词
D O I
10.1006/jcph.1996.0158
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
We present new algorithms for simulation of fractional Brownian motion (fBm) which comprises a set of important random functions widely used in geophysical and physical modeling, fractal image (landscape) simulating, and signal processing. The new algorithms, which are both accurate and efficient, allow us to generate not only a one-dimensional fBm process, but also two- and three-dimensional fBm fields. (C) 1996 Academic Press, Inc.
引用
下载
收藏
页码:66 / 72
页数:7
相关论文
共 50 条
  • [21] Tempered fractional Brownian motion
    Meerschaert, Mark M.
    Sabzikar, Farzad
    STATISTICS & PROBABILITY LETTERS, 2013, 83 (10) : 2269 - 2275
  • [22] Oscillatory Fractional Brownian Motion
    T. Bojdecki
    L. G. Gorostiza
    A. Talarczyk
    Acta Applicandae Mathematicae, 2013, 127 : 193 - 215
  • [23] Deconvolution of fractional Brownian motion
    Pipiras, V
    Taqqu, MS
    JOURNAL OF TIME SERIES ANALYSIS, 2002, 23 (04) : 487 - 501
  • [24] On the prediction of fractional Brownian motion
    Gripenberg, G
    Norros, I
    JOURNAL OF APPLIED PROBABILITY, 1996, 33 (02) : 400 - 410
  • [25] On simulating fractional Brownian motion
    Szulga, J
    Molz, F
    HIGH DIMENSIONAL PROBABILITY II, 2000, 47 : 377 - 387
  • [26] Approximations of fractional Brownian motion
    Li, Yuqiang
    Dai, Hongshuai
    BERNOULLI, 2011, 17 (04) : 1195 - 1216
  • [27] On the prediction of fractional Brownian motion
    Gripenberg, G.
    Norros, I.
    1996, (33)
  • [28] Fractal (fractional) Brownian motion
    Chow, Winston C.
    WILEY INTERDISCIPLINARY REVIEWS-COMPUTATIONAL STATISTICS, 2011, 3 (02): : 149 - 162
  • [29] Trading Fractional Brownian Motion
    Guasoni, Paolo
    Nika, Zsolt
    Rasonyi, Miklos
    SIAM JOURNAL ON FINANCIAL MATHEMATICS, 2019, 10 (03): : 769 - 789
  • [30] The multiparameter fractional Brownian motion
    Herbin, Erick
    Merzbach, Ely
    MATH EVERYWHERE: DETERMINISTIC AND STOCHASTIC MODELLING IN BIOMEDICINE, ECONOMICS AND INDUSTRY, 2007, : 93 - +