New methods for simulation of fractional Brownian motion

被引:51
|
作者
Yin, ZM [1 ]
机构
[1] UNIV VICTORIA,SCH EARTH & OCEAN SCI,VICTORIA,BC V8W 2Y2,CANADA
基金
加拿大自然科学与工程研究理事会;
关键词
D O I
10.1006/jcph.1996.0158
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
We present new algorithms for simulation of fractional Brownian motion (fBm) which comprises a set of important random functions widely used in geophysical and physical modeling, fractal image (landscape) simulating, and signal processing. The new algorithms, which are both accurate and efficient, allow us to generate not only a one-dimensional fBm process, but also two- and three-dimensional fBm fields. (C) 1996 Academic Press, Inc.
引用
收藏
页码:66 / 72
页数:7
相关论文
共 50 条
  • [1] New methods for simulation of fractional brownian motion
    Pacific Geoscience Centre, Geological Survey of Canada, Sidney, BC V8L 4B2, Canada
    不详
    [J]. J. Comput. Phys., 1 (66-72):
  • [2] Simulation of fractional brownian motion
    Ruemelin, W.
    [J]. Proceedings of the IFIP Conference on Fractals in the Fundamental and Applied Sciences, 1991,
  • [3] On spectral simulation of fractional Brownian motion
    Dieker, AB
    Mandjes, M
    [J]. PROBABILITY IN THE ENGINEERING AND INFORMATIONAL SCIENCES, 2003, 17 (03) : 417 - 434
  • [4] On the simulation of sub-fractional Brownian motion
    Morozewicz, Aneta
    Filatova, Darya
    [J]. 2015 20TH INTERNATIONAL CONFERENCE ON METHODS AND MODELS IN AUTOMATION AND ROBOTICS (MMAR), 2015, : 400 - 405
  • [5] Is it Brownian or fractional Brownian motion?
    Li, Meiyu
    Gencay, Ramazan
    Xue, Yi
    [J]. ECONOMICS LETTERS, 2016, 145 : 52 - 55
  • [6] Simulation of Fractional Brownian Motion and Estimation of Hurst Parameter
    Pashko, Anatolii
    Sinyayska, Olga
    Oleshko, Tetiana
    [J]. 15TH INTERNATIONAL CONFERENCE ON ADVANCED TRENDS IN RADIOELECTRONICS, TELECOMMUNICATIONS AND COMPUTER ENGINEERING (TCSET - 2020), 2020, : 632 - 637
  • [7] A comparison of analytical methods for the study of fractional Brownian motion
    Biomedical Engineering Department, Rutgers University, P.O. Box 909, Piscataway, NJ 08855, United States
    [J]. ANN. BIOMED. ENG., 4 (537-543):
  • [8] A comparison of analytical methods for the study of fractional Brownian motion
    Fischer, R
    Akay, M
    [J]. ANNALS OF BIOMEDICAL ENGINEERING, 1996, 24 (04) : 537 - 543
  • [9] Quality of synthesis and analysis methods for fractional Brownian motion
    Jennane, R
    Harba, R
    Jacquet, G
    [J]. 1996 IEEE DIGITAL SIGNAL PROCESSING WORKSHOP, PROCEEDINGS, 1996, : 307 - 310
  • [10] A new look at the fractional Brownian motion definition
    Ortigueira, Manuel Duarte
    Batista, Arnaldo Guimaraes
    [J]. PROCEEDINGS OF THE ASME INTERNATIONAL DESIGN ENGINEERING TECHNICAL CONFERENCES AND COMPUTERS AND INFORMATION IN ENGINEERING CONFERENCE 2007, VOL 5, PTS A-C,, 2008, : 275 - 283