A Partially Uniform Target Birth Model for Gaussian Mixture PHD/CPHD Filtering

被引:51
|
作者
Beard, Michael [1 ]
Vo, Ba Tuong [2 ]
Vo, Ba-Ngu [2 ]
Arulampalam, Sanjeev [1 ]
机构
[1] Def Sci & Technol Org, Rockingham Dc, WA 6967, Australia
[2] Curtin Univ, Dept Elect & Comp Engn, Bentley, WA, Australia
基金
澳大利亚研究理事会;
关键词
HYPOTHESIS DENSITY FILTER; MOTION ANALYSIS; PHD FILTERS; OBSERVABILITY; PERFORMANCE;
D O I
10.1109/TAES.2013.6621859
中图分类号
V [航空、航天];
学科分类号
08 ; 0825 ;
摘要
The conventional GMPHD/CPHD filters require the PHD for target births to be a Gaussian mixture (GM), which is potentially inefficient because careful selection of the mixture parameters may be required to ensure good performance. Here we present approximations which allow part of the birth PHD to be uniformly distributed, obviating the need to use a large GM to model target births. The benefits of this approach are demonstrated by simulations on a bearings-only filtering scenario.
引用
收藏
页码:2835 / 2844
页数:10
相关论文
共 50 条
  • [41] DeepGUM: Learning Deep Robust Regression with a Gaussian-Uniform Mixture Model
    Lathuiliere, Stephane
    Mesejo, Pablo
    Alameda-Pineda, Xavier
    Horaud, Radu
    [J]. COMPUTER VISION - ECCV 2018, PT V, 2018, 11209 : 205 - 221
  • [42] Model-Based Learning Using a Mixture of Mixtures of Gaussian and Uniform Distributions
    Browne, Ryan P.
    McNicholas, Paul D.
    Sparling, Matthew D.
    [J]. IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2012, 34 (04) : 814 - 817
  • [43] Extended Target Tracking Using a Gaussian-Mixture PHD Filter (vol 48, pg 3268, 2012)
    Granstrom, Karl
    Orguner, Umut
    Mahler, Ronald
    Lundquist, Christian
    [J]. IEEE TRANSACTIONS ON AEROSPACE AND ELECTRONIC SYSTEMS, 2017, 53 (02) : 1055 - 1058
  • [44] Moving Target Detection Method Based on Improved Gaussian Mixture Model
    Ma, J. Y.
    Jie, F. R.
    Hu, Y. J.
    [J]. NINTH INTERNATIONAL CONFERENCE ON DIGITAL IMAGE PROCESSING (ICDIP 2017), 2017, 10420
  • [45] Target Detection Algorithm Based on Gaussian Mixture Background Subtraction Model
    Wang, Kejun
    Liang, Ying
    Xing, Xianglei
    Zhang, Rongyi
    [J]. PROCEEDINGS OF THE 2015 CHINESE INTELLIGENT AUTOMATION CONFERENCE: INTELLIGENT INFORMATION PROCESSING, 2015, 336 : 439 - 447
  • [46] Gaussian mixture model-based target feature extraction and visualization
    Ji Ma
    Jinjin Chen
    Liye Chen
    Xingjian Zhou
    Xujia Qin
    Ying Tang
    Guodao Sun
    Jiazhou Chen
    [J]. Journal of Visualization, 2021, 24 : 545 - 563
  • [47] Gaussian mixture model-based target feature extraction and visualization
    Ma, Ji
    Chen, Jinjin
    Chen, Liye
    Zhou, Xingjian
    Qin, Xujia
    Tang, Ying
    Sun, Guodao
    Chen, Jiazhou
    [J]. JOURNAL OF VISUALIZATION, 2021, 24 (03) : 545 - 563
  • [48] A multi-target tracking algorithm based on Gaussian mixture model
    Sun Lili
    Cao Yunhe
    Wu Wenhua
    Liu Yutao
    [J]. JOURNAL OF SYSTEMS ENGINEERING AND ELECTRONICS, 2020, 31 (03) : 482 - 487
  • [49] A multi-target tracking algorithm based on Gaussian mixture model
    SUN Lili
    CAO Yunhe
    WU Wenhua
    LIU Yutao
    [J]. Journal of Systems Engineering and Electronics, 2020, 31 (03) : 482 - 487
  • [50] A Gaussian-Mixture PHD Filter Based on Random Hypersurface Model for Multiple Extended Targets
    Han, Yulan
    Zhu, Hongyan
    Han, Chongzhao
    [J]. 2013 16TH INTERNATIONAL CONFERENCE ON INFORMATION FUSION (FUSION), 2013, : 1752 - 1759