Fast Approximations to Structured Sparse Coding and Applications to Object Classification

被引:0
|
作者
Szlam, Arthur [1 ]
Gregor, Karol [2 ]
LeCun, Yann [3 ]
机构
[1] CUNY City Coll, New York, NY 10031 USA
[2] Howard Hughes Med Inst, Chevy Chase, MA USA
[3] NYU, New York, NY 10003 USA
来源
基金
美国国家科学基金会;
关键词
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
We describe a method for fast approximation of sparse coding. A given input vector is passed through a binary tree. Each leaf of the tree contains a subset of dictionary elements. The coefficients corresponding to these dictionary elements are allowed to be nonzero and their values are calculated quickly by multiplication with a precomputed pseudoinverse. The tree parameters, the dictionary, and the subsets of the dictionary corresponding to each leaf are learned. In the process of describing this algorithm, we discuss the more general problem of learning the groups in group structured sparse modeling. We show that our method creates good sparse representations by using it in the object recognition framework of [1,2]. Implementing our own fast version of the SIFT descriptor the whole system runs at 20 frames per second on 321 x 481 sized images on a laptop with a quad-core cpu, while sacrificing very little accuracy on the Caltech 101, Caltech 256, and 15 scenes benchmarks.
引用
收藏
页码:200 / 213
页数:14
相关论文
共 50 条
  • [21] Fast and Flexible Convolutional Sparse Coding
    Heide, Felix
    Heidrich, Wolfgang
    Wetzstein, Gordon
    2015 IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2015, : 5135 - 5143
  • [22] Fast sparse regression and classification
    Friedman, Jerome H.
    INTERNATIONAL JOURNAL OF FORECASTING, 2012, 28 (03) : 722 - 738
  • [23] FAST GROUP SPARSE CLASSIFICATION
    Majumdar, A.
    Ward, R. K.
    2009 IEEE PACIFIC RIM CONFERENCE ON COMMUNICATIONS, COMPUTERS AND SIGNAL PROCESSING, VOLS 1 AND 2, 2009, : 11 - 16
  • [24] Fast group sparse classification
    Majumdar, Angshul
    Ward, Rabab K.
    CANADIAN JOURNAL OF ELECTRICAL AND COMPUTER ENGINEERING-REVUE CANADIENNE DE GENIE ELECTRIQUE ET INFORMATIQUE, 2009, 34 (04): : 136 - 144
  • [25] Sparse Feature Convolutional Neural Network with Cluster Max Extraction for Fast Object Classification
    Kim, Sung Hee
    Pae, Dong Sung
    Kang, Tae-Koo
    Kim, Dong W.
    Lim, Myo Taeg
    JOURNAL OF ELECTRICAL ENGINEERING & TECHNOLOGY, 2018, 13 (06) : 2468 - 2478
  • [26] Supervised Bayesian Sparse Coding for Classification
    Xu, Jinhua
    Ding, Li
    Sun, Shiliang
    PROCEEDINGS OF THE 2014 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN), 2014, : 517 - 524
  • [27] DISCRIMINANT SPARSE CODING FOR IMAGE CLASSIFICATION
    Liu, Bao-Di
    Wang, Yu-Xiong
    Zhang, Yu-Jin
    Zheng, Yin
    2012 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING (ICASSP), 2012, : 2193 - 2196
  • [28] Sparse Coding for Sound Event Classification
    Zhang, Mingming
    Li, Weifeng
    Wang, Longbiao
    Wei, Jianguo
    Wu, Zhiyong
    Liao, Qingmin
    2013 ASIA-PACIFIC SIGNAL AND INFORMATION PROCESSING ASSOCIATION ANNUAL SUMMIT AND CONFERENCE (APSIPA), 2013,
  • [29] CONVOLUTIONAL SPARSE CODING CLASSIFICATION MODEL FOR IMAGE CLASSIFICATION
    Chen, Boheng
    Li, Jie
    Ma, Biyun
    Wei, Gang
    2016 IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING (ICIP), 2016, : 1918 - 1922
  • [30] Flexible Multilayer Sparse Approximations of Matrices and Applications
    Le Magoarou, Luc
    Gribonval, Remi
    IEEE JOURNAL OF SELECTED TOPICS IN SIGNAL PROCESSING, 2016, 10 (04) : 688 - 700