On the existence of cluster tilting objects in triangulated categories

被引:2
|
作者
Bergh, Petter Andreas [1 ]
机构
[1] NTNU, Dept Math Sci, NO-7491 Trondheim, Norway
关键词
Cluster tilting objects; Complexity; Local Gorenstein algebras; SUPPORT VARIETIES; ALGEBRAS; MODULES; COHOMOLOGY;
D O I
10.1016/j.jalgebra.2014.06.024
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We show that in a triangulated category, the existence of a cluster tilting object often implies that the homomorphism groups are bounded in size. This holds for the stable module category of a selfinjective algebra, and as a corollary we recover a theorem of Erdmann and Holm. We then apply our result to Calabi-Yau triangulated categories, in particular stable categories of maximal Cohen-Macaulay modules over commutative local complete Gorenstein algebras with isolated singularities. We show that the existence of almost all kinds of cluster tilting objects can only occur if the algebra is a hypersurface. (C) 2014 Elsevier Inc. All rights reserved.
引用
收藏
页码:1 / 14
页数:14
相关论文
共 50 条
  • [21] Strongly copure projective objects in triangulated categories
    Ma, Xin
    Liu, Zhongkui
    HACETTEPE JOURNAL OF MATHEMATICS AND STATISTICS, 2016, 45 (03): : 765 - 780
  • [22] Dimensions of triangulated categories via Koszul objects
    Petter Andreas Bergh
    Srikanth B. Iyengar
    Henning Krause
    Steffen Oppermann
    Mathematische Zeitschrift, 2010, 265 : 849 - 864
  • [23] Stability conditions and exceptional objects in triangulated categories
    Chen, Zihong
    MATHEMATICAL RESEARCH LETTERS, 2020, 27 (04) : 945 - 971
  • [24] Dimensions of triangulated categories via Koszul objects
    Bergh, Petter Andreas
    Iyengar, Srikanth B.
    Krause, Henning
    Oppermann, Steffen
    MATHEMATISCHE ZEITSCHRIFT, 2010, 265 (04) : 849 - 864
  • [25] On the set of tilting objects in hereditary categories
    Happel, D
    Unger, L
    Representations of Algebras and Related Topics, 2005, 45 : 141 - 159
  • [26] From triangulated categories to cluster algebras II
    Caldero, Philippe
    Keller, Bernhard
    ANNALES SCIENTIFIQUES DE L ECOLE NORMALE SUPERIEURE, 2006, 39 (06): : 983 - 1009
  • [27] A Note on Generic Objects and Locally Finite Triangulated Categories
    Zhe Han
    Applied Categorical Structures, 2016, 24 : 875 - 884
  • [28] Maximal rigid objects without loops in connected 2-CY categories are cluster-tilting objects
    Xu, Jinde
    Ouyang, Baiyu
    JOURNAL OF ALGEBRA AND ITS APPLICATIONS, 2015, 14 (05)
  • [29] Homologically finite-dimensional objects in triangulated categories
    Kuznetsov, Alexander
    Shinder, Evgeny
    SELECTA MATHEMATICA-NEW SERIES, 2025, 31 (02):
  • [30] A Note on Generic Objects and Locally Finite Triangulated Categories
    Han, Zhe
    APPLIED CATEGORICAL STRUCTURES, 2016, 24 (06) : 875 - 884