The Capacity of Artificial Intelligence in COVID-19 Response: A Review in Context of COVID-19 Screening and Diagnosis

被引:1
|
作者
Ozsahin, Dilber Uzun [1 ,2 ]
Isa, Nuhu Abdulhaqq [3 ,4 ]
Uzun, Berna [2 ,5 ,6 ]
机构
[1] Sharjah Univ, Coll Hlth Sci, Dept Med Diagnost Imaging, POB 27272, Sharjah, U Arab Emirates
[2] Near East Univ, Operat Res Ctr Healthcare, TRNC Mersin 10, TR-99138 Nicosia, Turkey
[3] Near East Univ, Dept Biomed Engn, TRNC Mersin 10, TR-99138 Nicosia, Turkey
[4] Coll Hlth Sci & Technol, Dept Biomed Engn, Keffi 961101, Keffi Nasarawa, Nigeria
[5] Carlos III Madrid Univ, Dept Stat, Getafe 28903, Madrid, Spain
[6] Near East Univ, Dept Math, TRNC Mersin 10, TR-99138 Nicosia, Turkey
关键词
COVID-19; diagnosis; AI in COVID-19; CT images; CXR images; screening; CT;
D O I
10.3390/diagnostics12122943
中图分类号
R5 [内科学];
学科分类号
1002 ; 100201 ;
摘要
Artificial intelligence (AI) has been shown to solve several issues affecting COVID-19 diagnosis. This systematic review research explores the impact of AI in early COVID-19 screening, detection, and diagnosis. A comprehensive survey of AI in the COVID-19 literature, mainly in the context of screening and diagnosis, was observed by applying the preferred reporting items for systematic reviews and meta-analyses (PRISMA) guidelines. Data sources for the years 2020, 2021, and 2022 were retrieved from google scholar, web of science, Scopus, and PubMed, with target keywords relating to AI in COVID-19 screening and diagnosis. After a comprehensive review of these studies, the results found that AI contributed immensely to improving COVID-19 screening and diagnosis. Some proposed AI models were shown to have comparable (sometimes even better) clinical decision outcomes, compared to experienced radiologists in the screening/diagnosing of COVID-19. Additionally, AI has the capacity to reduce physician work burdens and fatigue and reduce the problems of several false positives, associated with the RT-PCR test (with lower sensitivity of 60-70%) and medical imaging analysis. Even though AI was found to be timesaving and cost-effective, with less clinical errors, it works optimally under the supervision of a physician or other specialists.
引用
收藏
页数:14
相关论文
共 50 条
  • [41] The prospective of Artificial Intelligence in COVID-19 Pandemic
    Swati Swayamsiddha
    Kumar Prashant
    Devansh Shaw
    Chandana Mohanty
    Health and Technology, 2021, 11 : 1311 - 1320
  • [42] The prospective of Artificial Intelligence in COVID-19 Pandemic
    Swayamsiddha, Swati
    Prashant, Kumar
    Shaw, Devansh
    Mohanty, Chandana
    HEALTH AND TECHNOLOGY, 2021, 11 (06) : 1311 - 1320
  • [43] Artificial intelligence and COVID-19: A multidisciplinary approach
    Ahuja, Abhimanyu S.
    Reddy, Vineet Pasam
    Marques, Oge
    INTEGRATIVE MEDICINE RESEARCH, 2020, 9 (03)
  • [44] Role of Artificial Intelligence in COVID-19 Detection
    Gudigar, Anjan
    Raghavendra, U.
    Nayak, Sneha
    Ooi, Chui Ping
    Chan, Wai Yee
    Gangavarapu, Mokshagna Rohit
    Dharmik, Chinmay
    Samanth, Jyothi
    Kadri, Nahrizul Adib
    Hasikin, Khairunnisa
    Barua, Prabal Datta
    Chakraborty, Subrata
    Ciaccio, Edward J.
    Acharya, U. Rajendra
    SENSORS, 2021, 21 (23)
  • [45] COVID-19 pandemic and potential of artificial intelligence
    Bhonsale, Aman
    Ahirwar, Ashok Kumar
    Kaim, Kirti
    Jha, Puja Kumari
    HORMONE MOLECULAR BIOLOGY AND CLINICAL INVESTIGATION, 2022, 43 (01) : 81 - 84
  • [46] Artificial intelligence for COVID-19: saviour or saboteur?
    不详
    LANCET DIGITAL HEALTH, 2021, 3 (01): : E1 - E1
  • [47] Fighting COVID-19, a place for artificial intelligence
    Emile, Sameh Hany
    Hamid, Hytham K. S.
    TRANSBOUNDARY AND EMERGING DISEASES, 2020, 67 (05) : 1754 - 1755
  • [48] The role of artificial intelligence in tackling COVID-19
    Arora, Neelima
    Banerjee, Amit K.
    Narasu, Mangamoori L.
    FUTURE VIROLOGY, 2020, 15 (11) : 717 - 724
  • [49] Artificial intelligence in COVID-19 drug repurposing
    Zhou, Yadi
    Wang, Fei
    Tang, Jian
    Nussinov, Ruth
    Cheng, Feixiong
    LANCET DIGITAL HEALTH, 2020, 2 (12): : E667 - E676
  • [50] Review of Artificial Intelligence Techniques in Imaging Data Acquisition, Segmentation, and Diagnosis for COVID-19
    Shi, Feng
    Wang, Jun
    Shi, Jun
    Wu, Ziyan
    Wang, Qian
    Tang, Zhenyu
    He, Kelei
    Shi, Yinghuan
    Shen, Dinggang
    IEEE REVIEWS IN BIOMEDICAL ENGINEERING, 2021, 14 : 4 - 15