Microscopic basis for Onsager-Machlup theory

被引:0
|
作者
Koide, J [1 ]
机构
[1] Keio Univ, Fac Sci & Technol, Dept Phys, Yokohama, Kanagawa 2238522, Japan
来源
PROGRESS OF THEORETICAL PHYSICS | 1999年 / 102卷 / 06期
关键词
D O I
10.1143/PTP.102.1065
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The phenomenological Langevin equation in the theory of Onsager-Machlup (OM) is derived from a microscopic theory based on the closed time path generating functional formalism. Following the theory of Wakou-Koide-Fukuda (WKF) we derive the general form of the Langevin equation and carry out the adiabatic expansion. Then, at first order in the adiabatic expansion, the Langevin equation of OM type is naturally derived. In the course of the derivation, the theory of WKF is extended to the multi-macrovariable case, which is defined as the space average of arbitrary operators. The method of adiabatic expansion is made more systematic by using the inversion formula. We proceed to second order in the adiabatic expansion and show that the Langevin equation extended by Machlup-Onsager is obtained.
引用
收藏
页码:1065 / 1084
页数:20
相关论文
共 50 条
  • [31] The graph limit of the minimizer of the Onsager-Machlup functional and its computation
    Qiang Du
    Tiejun Li
    Xiaoguang Li
    Weiqing Ren
    [J]. Science China Mathematics, 2021, 64 : 239 - 280
  • [32] Are Minimizers of the Onsager-Machlup Functional Strong Posterior Modes?\ast
    Kretschmann, Remo
    [J]. SIAM-ASA JOURNAL ON UNCERTAINTY QUANTIFICATION, 2023, 11 (04): : 1105 - 1138
  • [33] APPLICATION OF ONSAGER-MACHLUP FUNCTION TO NONLINEAR FLUCTUATIONS OF A THERMODYNAMIC VARIABLE
    MOREAU, M
    [J]. PHYSICA A, 1978, 90 (3-4): : 410 - 430
  • [34] GAMMA-LIMIT OF THE ONSAGER-MACHLUP FUNCTIONAL ON THE SPACE OF CURVES
    Li, Tiejun
    Li, Xiaoguang
    [J]. SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2021, 53 (01) : 1 - 31
  • [35] The graph limit of the minimizer of the Onsager-Machlup functional and its computation
    Qiang Du
    Tiejun Li
    Xiaoguang Li
    Weiqing Ren
    [J]. Science China Mathematics, 2021, 64 (02) : 239 - 280
  • [36] APPLICATION OF THE ONSAGER-MACHLUP FUNCTION TO NON-LINEAR DIFFUSION PROCESSES
    DURR, D
    BACH, A
    [J]. ZEITSCHRIFT FUR PHYSIK B-CONDENSED MATTER, 1979, 32 (04): : 413 - 417
  • [37] The Onsager-Machlup Integral for Non-Reciprocal Systems with Odd Elasticity
    Yasuda, Kento
    Kobayashi, Akira
    Lin, Li-Shing
    Hosaka, Yuto
    Sou, Isamu
    Komura, Shigeyuki
    [J]. JOURNAL OF THE PHYSICAL SOCIETY OF JAPAN, 2022, 91 (01)
  • [38] COMMENT ON FUNCTIONAL-INTEGRATION AND THE ONSAGER-MACHLUP LAGRANGIAN IN RIEMANNIAN GEOMETRIES
    LANGOUCHE, F
    ROEKAERTS, D
    TIRAPEGUI, E
    [J]. PHYSICAL REVIEW A, 1980, 21 (04): : 1344 - 1346
  • [39] Sampling Path Ensembles using the Onsager-Machlup Action with Replica Exchange
    Fujisaki, Hiroshi
    Kidera, Akinori
    Shiga, Motoyuki
    [J]. BIOPHYSICAL JOURNAL, 2010, 98 (03) : 573A - 573A
  • [40] DERIVATION OF THE ONSAGER-MACHLUP FUNCTION BY A MINIMIZATION OF THE KULLBACK-LEIBLER ENTROPY
    ITO, H
    [J]. JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1981, 14 (10): : L385 - L388