On nonsingularity of circulant matrices

被引:6
|
作者
Chen, Zhangchi
机构
关键词
Circulant matrices; Cyclotomic polynomials; Communication theory; Coding;
D O I
10.1016/j.laa.2020.12.010
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In Communication theory and Coding, it is expected that certain circulant matrices having k ones and k + 1 zeros in the first row are nonsingular. We prove that such matrices are always nonsingular when 2k + 1 is either a power of a prime, or a product of two distinct primes. For any other integer 2k + 1 we construct circulant matrices having determinant 0. The smallest singular matrix appears when 2k + 1 = 45. The possibility for such matrices to be singular is rather low, smaller than 10(-4) in this case. (C) 2020 Elsevier Inc. All rights reserved.
引用
收藏
页码:162 / 176
页数:15
相关论文
共 50 条
  • [41] Nonsingularity of the difference and the sum of two idempotent matrices
    Zuo, Kezheng
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2010, 433 (02) : 476 - 482
  • [42] Transformations Preserving Nonsingularity, Trace and Spectrum of Matrices
    Brociek, R.
    Pleszczynski, M.
    Witula, R.
    Lorenc, P.
    APPLICATION OF MATHEMATICS IN TECHNICAL AND NATURAL SCIENCES (AMITANS '14), 2014, 1629 : 344 - 348
  • [44] Nonsingularity of matrices associated with classes of arithmetical functions
    Hong, SF
    JOURNAL OF ALGEBRA, 2004, 281 (01) : 1 - 14
  • [45] COHERENT OPTICAL TECHNIQUES FOR DIAGONALIZATION AND INVERSION OF CIRCULANT MATRICES AND CIRCULANT APPROXIMATIONS TO TOEPLITZ MATRICES
    CAO, Q
    GOODMAN, JW
    APPLIED OPTICS, 1984, 23 (06): : 803 - 811
  • [46] On nonsingularity of combinations of two group invertible matrices and two tripotent matrices
    Liu, Xiaoji
    Wu, Shuxia
    Benitez, Julio
    LINEAR & MULTILINEAR ALGEBRA, 2011, 59 (12): : 1409 - 1417
  • [47] Hadamard matrices constructed by circulant and negacyclic matrices
    Xia, Tianbing
    Xia, Mingyuan
    Seberry, Jennifer
    Wu, Jing
    AUSTRALASIAN JOURNAL OF COMBINATORICS, 2006, 34 : 105 - 116
  • [48] Factoring Matrices into the Product of Circulant and Diagonal Matrices
    Marko Huhtanen
    Allan Perämäki
    Journal of Fourier Analysis and Applications, 2015, 21 : 1018 - 1033
  • [49] THE CONSTRUCTION OF CIRCULANT MATRICES RELATED TO MDS MATRICES
    Malakhov, S. S.
    Rozhkov, M., I
    PRIKLADNAYA DISKRETNAYA MATEMATIKA, 2022, (56): : 17 - 27
  • [50] Factoring Matrices into the Product of Circulant and Diagonal Matrices
    Huhtanen, Marko
    Peramaki, Allan
    JOURNAL OF FOURIER ANALYSIS AND APPLICATIONS, 2015, 21 (05) : 1018 - 1033