THE LIMIT CYCLES OF A CLASS OF QUINTIC POLYNOMIAL VECTOR FIELDS

被引:0
|
作者
Llibre, Jaume [1 ]
Salhi, Tayeb [2 ]
机构
[1] Univ Autonoma Barcelona, Dept Matemat, Barcelona 08193, Catalonia, Spain
[2] Univ Mohamed El Bachir El Ibrahimi, Dept Math, Bordj Bou Arreridj 34265, El Anasser, Algeria
关键词
Limit cycle; periodic orbit; inverse integrating factor; polynomial vector field; BIFURCATIONS;
D O I
10.12775/TMNA.2019.030
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Using the inverse integrating factor we study the limit cycles of a class of polynomial vector fields of degree 5.
引用
收藏
页码:141 / 151
页数:11
相关论文
共 50 条
  • [41] On vector fields with prescribed limit cycles
    Korchagin A.B.
    [J]. Qualitative Theory of Dynamical Systems, 2005, 6 (2) : 217 - 232
  • [42] ON THE NUMBER OF LIMIT CYCLES FOR A QUINTIC LIENARD SYSTEM UNDER POLYNOMIAL PERTURBATIONS
    Li, Linlin
    Yang, Junmin
    [J]. JOURNAL OF APPLIED ANALYSIS AND COMPUTATION, 2019, 9 (06): : 2464 - 2481
  • [43] CONFIGURATIONS OF FANS AND NESTS OF LIMIT-CYCLES FOR POLYNOMIAL VECTOR-FIELDS IN THE PLANE
    CIMA, A
    LLIBRE, J
    [J]. JOURNAL OF DIFFERENTIAL EQUATIONS, 1989, 82 (01) : 71 - 97
  • [44] On the structural instability of non-hyperbolic limit cycles on planar polynomial vector fields
    Santana, Paulo
    [J]. SAO PAULO JOURNAL OF MATHEMATICAL SCIENCES, 2024,
  • [45] Limit cycles for a class of polynomial differential systems
    Qiao, Jianyuan
    Shui, Shuliang
    [J]. ELECTRONIC JOURNAL OF QUALITATIVE THEORY OF DIFFERENTIAL EQUATIONS, 2016, (09) : 1 - 9
  • [46] LIMIT CYCLES FOR A CLASS OF POLYNOMIAL SYSTEMS AND APPLICATIONS
    Feng, Hanying
    Xu, Rui
    Liu, Qiming
    Yang, Pinghua
    [J]. ELECTRONIC JOURNAL OF DIFFERENTIAL EQUATIONS, 2003,
  • [47] LIMIT-CYCLES OF A CLASS OF POLYNOMIAL SYSTEMS
    CARBONELL, M
    LLIBRE, J
    [J]. PROCEEDINGS OF THE ROYAL SOCIETY OF EDINBURGH SECTION A-MATHEMATICS, 1988, 109 : 187 - 199
  • [48] An interesting class of polynomial vector fields
    Scheuermann, G
    Hagen, H
    Kruger, H
    [J]. MATHEMATICAL METHODS FOR CURVES AND SURFACES II, 1998, : 429 - 436
  • [49] LIMIT CYCLES OF QUARTIC AND QUINTIC POLYNOMIAL DIFFERENTIAL SYSTEMS VIA AVERAGING THEORY
    Y. Bouattia
    A. Makhlouf
    [J]. Annals of Applied Mathematics, 2011, (01) : 70 - 85
  • [50] On the number of limit cycles of a Z4-equivariant quintic polynomial system
    Xu, Weijiao
    Han, Maoan
    [J]. APPLIED MATHEMATICS AND COMPUTATION, 2010, 216 (10) : 3022 - 3034