In Silico Identification of Potential Inhibitors of the Main Protease of SARS-CoV-2 Using Combined Ligand-Based and Structure-Based Drug Design Approachc

被引:1
|
作者
Debnath, Bimal [1 ]
Saha, Apu Kr [2 ]
Bhaumik, Samhita [3 ]
Debnath, Sudhan [4 ]
机构
[1] Tripura Univ, Dept Forestry & Biodivers, Suryamaninagar, Tripura, India
[2] Natl Inst Technol, Dept Math, Agartala, Tripura, India
[3] Womens Coll, Dept Chem, Agartala, Tripura, India
[4] MBB Coll, Dept Chem, Agartala, Tripura, India
来源
关键词
COVID-19; DrugBank; molecular docking; molecular dynamics; pharmacophore; SARS-CoV-2; virtual screening; COV 3CL PROTEASE; SARS; PROTEINS; PERCEPTION; DOCKING; PHASE; GLIDE; MODEL;
D O I
10.14744/ejmo.2020.91768
中图分类号
R73 [肿瘤学];
学科分类号
100214 ;
摘要
Objectives: The outbreak of coronavirus disease 2019 (COVID-19) caused by the severe acute respiratory syndrome coronavirus 2 (SARS- CoV-2) remains a serious global threat. At the time of writing, there are no specific therapeutic agents or vaccines to combat this disease. This study was designed to identify the SARS-CoV-2 main protease inhibitors using drug molecule information retrieved from DrugBank 5.0 (Wishart et al.) Methods: A set of common pharmacophores were generated from a series of 22 known SARS-CoV inhibitors. The best pharmacophore used for virtual screening (VS) of DrugBank using the Phase module followed by structure-based virtual screening (VS) using Glide (Release 2020-1; Schrodinger LLC, New York, NY, USA) with SARS-CoV-2 main protease and 50 ns molecular dynamics (MD) simulation studies. Results: Six hits were selected based on the fitness score, extra-precision Glide score, and binding affinity with the main protease (Mpro). The predicted inhibitor constant (Ki) values of the 3 best hits, DB03777, DB06834, and DB07456, were 0.8176, 0.2148, and 0.1006 mu M, respectively. An MD simulation of DB07456 and DB13592 with the Mpro demonstrated stable protein-ligand complexes. Conclusion: The selected inhibitors displayed a similar type of binding interaction with co-ligands and remdesivir, and the predicted Ki values of 2 inhibitors were found to be superior to remdesivir. These selected hits may be used for further in vitro and in vivo studies against the SARS- CoV-2 Mpro.
引用
收藏
页码:336 / 348
页数:13
相关论文
共 50 条
  • [41] Structure-Based Virtual Screening and Biochemical Validation to Discover a Potential Inhibitor of the SARS-CoV-2 Main Protease
    Gupta, Akshita
    Rani, Chitra
    Pant, Pradeep
    Vijayan, Viswanathan
    Vikram, Naval
    Kaur, Punit
    Singh, Tej Pal
    Sharma, Sujata
    Sharma, Pradeep
    ACS OMEGA, 2020, 5 (51): : 33151 - 33161
  • [42] Identification of Potential SARS-CoV-2 Main Protease and Spike Protein Inhibitors from the Genus Aloe: An In Silico Study for Drug Development
    Abouelela, Mohamed E.
    Assaf, Hamdy K.
    Abdelhamid, Reda A.
    Elkhyat, Ehab S.
    Sayed, Ahmed M.
    Oszako, Tomasz
    Belbahri, Lassaad
    El Zowalaty, Ahmed E.
    Abdelkader, Mohamed Salaheldin A.
    MOLECULES, 2021, 26 (06):
  • [43] Structure-Based and Ligand-Based Drug Design for HER 2 Receptor
    Huang, Hung-Jin
    Lee, Kuei-Jen
    Yu, Hsin Wei
    Chen, Chien-Yu
    Hsu, Chih-Ho
    Chen, Hsin-Yi
    Tsai, Fuu-Jen
    Chen, Calvin Yu-Chian
    JOURNAL OF BIOMOLECULAR STRUCTURE & DYNAMICS, 2010, 28 (01): : 23 - 37
  • [44] Antiviral agents against COVID-19: structure-based design of specific peptidomimetic inhibitors of SARS-CoV-2 main protease
    Frecer, Vladimir
    Miertus, Stanislav
    RSC ADVANCES, 2020, 10 (66) : 40244 - 40263
  • [45] An In Silico Approach for Identification of Inhibitors as a Potential Therapeutics Targeting SARS-Cov-2 Protease
    Mamidala, Estari
    Davella, Rakesh
    Gurrapu, Swapna
    ASIAN JOURNAL OF PHARMACEUTICAL RESEARCH AND HEALTH CARE, 2020, 12 (01) : 3 - 9
  • [46] Ligand-Based and Structured-Based In Silico Repurposing Approaches to Predict Inhibitors of SARS-CoV-2 Mpro Protein
    Juarez-Saldivar, Alfredo
    Lara-Ramirez, Edgar E.
    Reyes-Espinosa, Francisco
    Paz-Gonzalez, Alma D.
    Villalobos-Rocha, Juan Carlos
    Rivera, Gildardo
    SCIENTIA PHARMACEUTICA, 2020, 88 (04) : 1 - 14
  • [47] A Multistage In Silico Study of Natural Potential Inhibitors Targeting SARS-CoV-2 Main Protease
    Elkaeed, Eslam B.
    Eissa, Ibrahim H.
    Elkady, Hazem
    Abdelalim, Ahmed
    Alqaisi, Ahmad M.
    Alsfouk, Aisha A.
    Elwan, Alaa
    Metwaly, Ahmed M.
    INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES, 2022, 23 (15)
  • [48] In silico investigation of saponins and tannins as potential inhibitors of SARS-CoV-2 main protease (Mpro)
    Victoria Adeola Falade
    Temitope Isaac Adelusi
    Ibrahim Olaide Adedotun
    Misbaudeen Abdul-Hammed
    Teslim Alabi Lawal
    Saheed Alabi Agboluaje
    In Silico Pharmacology, 9 (1)
  • [49] In silico approach identified benzoylguanidines as SARS-CoV-2 main protease (Mpro) potential inhibitors
    de Santiago-Silva, Kaio Maciel
    Camargo, Priscila
    da Silva Gomes, Gabriel Felix
    Sotero, Ana Paula
    Orsato, Alexandre
    Perez, Carla Cristina
    Nakazato, Gerson
    da Silva Lima, Camilo Henrique
    Bispo, Marcelle
    JOURNAL OF BIOMOLECULAR STRUCTURE & DYNAMICS, 2023, 41 (16): : 7686 - 7699
  • [50] In silico investigation of potential inhibitors to main protease and spike protein of SARS-CoV-2 in propolis
    Harisna, Azza Hanif
    Nurdiansyah, Rizky
    Syaifie, Putri Hawa
    Nugroho, Dwi Wahyu
    Saputro, Kurniawan Eko
    Firdayani
    Prakoso, Chandra Dwi
    Rochman, Nurul Taufiqu
    Maulana, Nurwenda Novan
    Noviyanto, Alfian
    Mardliyati, Etik
    BIOCHEMISTRY AND BIOPHYSICS REPORTS, 2021, 26