Dynamic potentials and Green's functions of a quasi-plane piezoelectric medium with inclusion

被引:13
|
作者
Michelitsch, TM
Levin, VM
Gao, HJ
机构
[1] Max Planck Inst Met Res, Dept Theory Mesoscop Phenomena, D-70569 Stuttgart, Germany
[2] Petrozavodsk State Univ, Div Mech, Petrozavodsk 185640, Russia
关键词
Helmholtz potential; dynamic piezoelectric potential; dynamic Green's function; piezoelectric quasi-plane medium; dynamic inclusion; inclusion problem;
D O I
10.1098/rspa.2002.0979
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
The dynamic potentials of a two-dimensional (2D) quasi-plane piezoelectric infinite medium of transversely isotropic symmetry containing an inclusion of arbitrary shape is derived in terms of scalar solutions of the 2D Laplace and Helmholtz equations. Closed-form expressions for the space-frequency representation of this dynamic potential are obtained for the case when the spatial source distribution is characterized by a region occupied by a circular inclusion embedded in a quasi-plane transversely isotropic matrix. The results are used to solve the dynamic Eshelby problem of a circular inclusion (plane region with the same material characteristics as the matrix) undergoing uniform eigenstrain and eigenelectric field. In contrast to the static case, the dynamic electroelastic fields inside the circular inclusion are non-uniform in the space-frequency representation. The derived dynamic piezoelectric potentials are basic quantities for the description of the dynamic properties of micro-inhomogeneous quasi-plane piezoelectric material systems (e.g. fibre-reinforced piezocomposites).
引用
收藏
页码:2393 / 2415
页数:23
相关论文
共 50 条
  • [41] Green's functions for transversely isotropic piezoelectric solids
    Dunn, ML
    Wienecke, HA
    INTERNATIONAL JOURNAL OF SOLIDS AND STRUCTURES, 1996, 33 (30) : 4571 - 4581
  • [42] Elastodynamic Green's functions for a laminated piezoelectric cylinder
    Bai, H
    Taciroglu, E
    Dong, SB
    Shah, AH
    INTERNATIONAL JOURNAL OF SOLIDS AND STRUCTURES, 2004, 41 (22-23) : 6335 - 6350
  • [43] Diffusion in a disk with inclusion: Evaluating Green's functions
    Stana, Remus
    Lythe, Grant
    PLOS ONE, 2022, 17 (04):
  • [44] GREEN-FUNCTIONS FOR MAXWELL EQUATIONS IN THE PLANE-STRATIFIED MEDIUM
    ZHUK, NP
    TRETYAKOV, OA
    RADIOTEKHNIKA I ELEKTRONIKA, 1985, 30 (05): : 869 - 875
  • [45] Green's functions for a trigonal piezoelectric half-plane belonging to 3m crystal class
    Kharrazi, Hossein
    Khojasteh, Ali
    Rahimian, Mohammad
    Pak, Ronald Y. S.
    JOURNAL OF ENGINEERING MATHEMATICS, 2021, 127 (01)
  • [46] Green's functions for anti-plane deformations of a circular arc-crack at the interface of piezoelectric materials
    Gao, CF
    Kessler, H
    Balke, H
    ARCHIVE OF APPLIED MECHANICS, 2003, 73 (07) : 467 - 480
  • [47] Green’s functions for a trigonal piezoelectric half-plane belonging to 3m crystal class
    Hossein Kharrazi
    Ali Khojasteh
    Mohammad Rahimian
    Ronald Y. S. Pak
    Journal of Engineering Mathematics, 2021, 127
  • [48] Green’s functions for anti-plane deformations of a circular arc-crack at the interface of piezoelectric materials
    C.-F. Gao
    H. Kessler
    H. Balke
    Archive of Applied Mechanics, 2003, 73 : 467 - 480
  • [49] Exact Green's functions for localized irreversible potentials
    Castro-Alatorre, J. I.
    Condado, D.
    Sadurni, E.
    REVISTA MEXICANA DE FISICA, 2023, 69 (05)
  • [50] Optical potentials, retarded Green's functions, and nonorthogonality
    Birse, Michael C.
    PHYSICAL REVIEW C, 2020, 102 (04)