NONLINEAR SCHRODINGER-EQUATION;
DATA CAUCHY-THEORY;
WELL-POSEDNESS;
D O I:
10.1016/j.jde.2020.11.045
中图分类号:
O1 [数学];
学科分类号:
0701 ;
070101 ;
摘要:
We prove that for almost every initial data (u(0), u(1)) is an element of H-s x Hs-1 with s > p-3/p-1 there exists a global weak solution to the supercritical semilinear wave equation partial derivative(2)(t)u - Delta u + vertical bar u vertical bar(p-1)u = 0 where p > 5, in both R-3 and T-3. This improves in a probabilistic framework the classical result of Strauss [20] who proved global existence of weak solutions associated to H-1 x L-2 initial data. The proof relies on techniques introduced by Oh and Pocovnicu in [16] based on the pioneer work of Burq and Tzvetkov in [7]. We also improve the global well-posedness result in [21] for the subcritical regime p < 5 to the endpoint s = P-3/p-1. (C) 2020 Elsevier Inc. All rights reserved.
机构:
Lanzhou Univ, Sch Math & Stat, Lanzhou 730000, Peoples R China
Henan Univ Sci & Technol, Sch Math & Stat, Luoyang 471003, Peoples R ChinaLanzhou Univ, Sch Math & Stat, Lanzhou 730000, Peoples R China
Gao, Juanjuan
Zhang, Yong
论文数: 0引用数: 0
h-index: 0
机构:
Chizhou Univ, Dept Math & Comp Sci, Chizhou 247000, Peoples R ChinaLanzhou Univ, Sch Math & Stat, Lanzhou 730000, Peoples R China
Zhang, Yong
Zhao, Peihao
论文数: 0引用数: 0
h-index: 0
机构:
Lanzhou Univ, Sch Math & Stat, Lanzhou 730000, Peoples R ChinaLanzhou Univ, Sch Math & Stat, Lanzhou 730000, Peoples R China