Optimizing Performance of Hadoop with Parameter Tuning

被引:3
|
作者
Chen, Xiang [1 ]
Liang, Yi [1 ]
Li, Guang-Rui [2 ]
Chen, Cheng [1 ]
Liu, Si-Yu [1 ]
机构
[1] Beijing Univ Technol, Fac Informat Technol, Beijing, Peoples R China
[2] China Mobile Software Technol Co Ltd, 10 Bldg,Suzhou Software Pk,78, Suzhou, Peoples R China
关键词
D O I
10.1051/itmconf/20171203040
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
Optimizing Hadoop with the parameter tuning is an effective way to greatly improve the performance, but it usually costs too much time to identify the optimal parameters configuration because there are many parameters. Users are always blindly adjust too many parameters and are sometimes confused about which one could be changed at a higher-priority. To make optimization easier, classifying the parameter based on different applications will be helpful. In this paper, we will introduce a method that can classify these parameters in order that users can optimize performance more quickly and effectively for different applications.
引用
收藏
页数:4
相关论文
共 50 条
  • [31] OPTIMIZING HADOOP DATA LOCALITY: PERFORMANCE ENHANCEMENT STRATEGIES IN HETEROGENEOUS COMPUTING ENVIRONMENTS
    School of Electrical and Computer Engineering, Yeosu Campus, Chonnam National University, 59626, Korea, Republic of
    Scalable Comput. Pract. Exp., 6 (4558-4575):
  • [32] Repairing and Optimizing Hadoop hashCode Implementations
    Kocsis, Zoltan A.
    Neumann, Geoff
    Swan, Jerry
    Epitropakis, Michael G.
    Brownlee, Alexander E. I.
    Haraldsson, Sami O.
    Bowles, Edward
    SEARCH-BASED SOFTWARE ENGINEERING, 2014, 8636 : 259 - 264
  • [33] CoTuner: A Hierarchical Learning Framework for Coordinately Optimizing Resource Partitioning and Parameter Tuning
    Yang, Tiannuo
    Chen, Ruobing
    Li, Yusen
    Liu, Xiaoguang
    Wang, Gang
    PROCEEDINGS OF THE 52ND INTERNATIONAL CONFERENCE ON PARALLEL PROCESSING, ICPP 2023, 2023, : 317 - 326
  • [34] Piranha: Optimizing Short Jobs in Hadoop
    Elmeleegy, Khaled
    PROCEEDINGS OF THE VLDB ENDOWMENT, 2013, 6 (11): : 985 - 996
  • [35] Performance Analysis and Parameter Optimizing Rules of LT Codes
    Guo Chunmei
    Bi Xueyao
    CHINA COMMUNICATIONS, 2010, 7 (04) : 103 - 107
  • [36] Automatic parameter tuning framework for performance diagnosis report
    Uchiumi, Tetsuya
    Saitoh, Yuji
    Watanabe, Yukihiro
    2019 20TH ASIA-PACIFIC NETWORK OPERATIONS AND MANAGEMENT SYMPOSIUM (APNOMS), 2019,
  • [37] Identifying Performance Bottlenecks based on the Local Parameter Tuning
    Zenmyo, Teruyoshi
    ACM/IEEE SIXTH INTERNATIONAL CONFERENCE ON AUTONOMIC COMPUTING AND COMMUNICATIONS (ICAC '09), 2009, : 53 - 54
  • [38] Parameter tuning of big data platforms for performance optimization
    Pattanshetti, Tanuja
    Attar, Vahida
    JOURNAL OF INFORMATION & OPTIMIZATION SCIENCES, 2020, 41 (02): : 403 - 410
  • [39] Enhancing Performance of PSO with Automatic Parameter Tuning Technique
    Tewolde, Girma S.
    Hanna, Darrin M.
    Haskell, Richard E.
    2009 IEEE SWARM INTELLIGENCE SYMPOSIUM, 2009, : 67 - +
  • [40] Induction motor parameter tuning for high performance drives
    Seok, JK
    Sul, SK
    CONFERENCE RECORD OF THE 1998 IEEE INDUSTRY APPLICATIONS CONFERENCE, VOLS 1-3, 1998, : 633 - 639