A Method of Gesture Recognition Using CNN-SVM Model with Error Correction Strategy

被引:0
|
作者
Li, Jian [1 ,2 ]
Feng, Zhi-quan [1 ,2 ]
Xie, We [3 ]
Ai, Chang-sheng [4 ]
机构
[1] Univ Jinan, Sch Informat Sci & Engn, Jinan 250022, Shandong, Peoples R China
[2] Shandong Prov Key Lab Network Based Intelligent C, Jinan 250022, Shandong, Peoples R China
[3] Harbin Inst Technol, Sch Informat & Elect Engn, Weihai 264209, Peoples R China
[4] Univ Jinan, Sch Mech Engn, Jinan 250022, Shandong, Peoples R China
基金
国家重点研发计划; 中国国家自然科学基金;
关键词
Gesture recognition; Convolution neural network; Support vector machine; Probability estimation; Error correction strategy;
D O I
暂无
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
The gesture recognition methods based on artificial feature extraction are time-consuming and low recognition rate. The generalization ability of hand gesture recognition using convolution neural network is not strong. Therefore, this paper combines the advantages of CNN and SVM to propose a hybrid model to automatically extract the features and improve the generalization ability, in addition, we use an error correction strategy to reduce the error recognition rate of confusing gestures. First, the segmentation preprocessing of gesture data collected by Kinect. Then, the hybrid model automatically extracts features from the data and generates the predictions. Finally, using the error correction strategy to adjust the prediction result. We get a recognition rate of 95.81% without error correction strategy on our database, the average recognition rate of 97.32% with error correction strategy.
引用
收藏
页码:448 / 452
页数:5
相关论文
共 50 条
  • [21] A hybrid CNN-SVM classifier for weed recognition in winter rape field
    Tao, Tao
    Wei, Xinhua
    PLANT METHODS, 2022, 18 (01)
  • [22] Hybrid CNN-SVM Classifier for Human Emotion Recognition Using ROI Extraction and Feature Fusion
    Vaidya, Kanchan S.
    Patil, Pradeep M.
    Alagirisamy, Mukil
    WIRELESS PERSONAL COMMUNICATIONS, 2023, 132 (02) : 1099 - 1135
  • [23] Classification for Remote Sensing Data With Improved CNN-SVM Method
    Sun, Xiankun
    Liu, Lan
    Li, Chengfan
    Yin, Jingyuan
    Zhao, Junjuan
    Si, Wen
    IEEE ACCESS, 2019, 7 : 164507 - 164516
  • [24] Hybrid CNN-SVM Classifier for Human Emotion Recognition Using ROI Extraction and Feature Fusion
    Kanchan S. Vaidya
    Pradeep M. Patil
    Mukil Alagirisamy
    Wireless Personal Communications, 2023, 132 : 1099 - 1135
  • [25] Classification of macular abnormalities using a lightweight CNN-SVM framework
    Wang, Xuqian
    Gu, Yu
    MEASUREMENT SCIENCE AND TECHNOLOGY, 2022, 33 (06)
  • [26] Hybrid CNN-SVM Inference Accelerator on FPGA Using HLS
    Liu, Bing
    Zhou, Yanzhen
    Feng, Lei
    Fu, Hongshuo
    Fu, Ping
    ELECTRONICS, 2022, 11 (14)
  • [27] Real-Time Tomato Quality Assessment Using Hybrid CNN-SVM Model
    Mputu H.S.
    Mawgood A.
    Shimada A.
    Sayed M.S.
    IEEE Embedded Systems Letters, 2024, 16 (04) : 1 - 1
  • [28] CNN-SVM: a classification method for fruit fly image with the complex background
    Peng, Yingqiong
    Liao, Muxin
    Deng, Hong
    Ao, Ling
    Song, Yuxia
    Huang, Weiji
    Hua, Jing
    IET CYBER-PHYSICAL SYSTEMS: THEORY & APPLICATIONS, 2020, 5 (02) : 181 - 185
  • [29] Recognition of Muscle Fatigue Status Based on Improved Wavelet Threshold and CNN-SVM
    Wang, Junhong
    Sun, Yining
    Sun, Shaoming
    IEEE ACCESS, 2020, 8 : 207914 - 207922
  • [30] Handwriting Recognition on Form Document Using Convolutional Neural Network and Support Vector Machines (CNN-SVM)
    Darmatasia
    Fanany, Mohamad Ivan
    2017 5TH INTERNATIONAL CONFERENCE ON INFORMATION AND COMMUNICATION TECHNOLOGY (ICOIC7), 2017,