Computational exploration of structural information from cryo-electron tomograms

被引:50
|
作者
Frangakis, AS
Förster, F
机构
[1] European Mol Biol Lab, D-69117 Heidelberg, Germany
[2] Max Planck Inst Biochem, D-82152 Martinsried, Germany
关键词
D O I
10.1016/j.sbi.2004.04.003
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Cryo-electron tomography aims to act as an interface between in vivo cell imaging and techniques achieving atomic resolution. This attempt to bridge the resolution gap is facilitated by recent software and hardware advances. Information provided by atomically resolved macromolecules and molecular interaction data need to be put into a common framework in order to create a hybrid multidimensional cellular image. A major partner in this enterprise is the development of regularization and pattern recognition techniques, which try to identify macromolecular complexes as a function of their structural signature in cryo-electron tomograms of living cells.
引用
下载
收藏
页码:325 / 331
页数:7
相关论文
共 50 条
  • [21] Cryo-electron tomography shapes structural biology
    Studt, T
    R&D MAGAZINE, 2005, 47 (04): : 24 - 25
  • [22] The computational complexity of orientation search in cryo-electron Microscopy
    Mielikäinen, T
    Ravantti, J
    Ukkonen, E
    COMPUTATIONAL SCIENCE - ICCS 2004, PT 1, PROCEEDINGS, 2004, 3036 : 231 - 238
  • [23] Self-supervised learning for macromolecular structure classification based on cryo-electron tomograms
    Gupta, Tarun
    He, Xuehai
    Uddin, Mostofa Rafid
    Zeng, Xiangrui
    Zhou, Andrew
    Zhang, Jing
    Freyberg, Zachary
    Xu, Min
    FRONTIERS IN PHYSIOLOGY, 2022, 13
  • [24] Computational Tools to Improve Visualization by Cryo-Electron Tomography
    Galaz-Montoya, Jesus G.
    Hecksel, Corey W.
    Chin, Jessica
    Wang, Rui
    Lewis, Cannon W.
    Haemmerle, Monika
    Schmid, Michael F.
    Ludtke, Steven J.
    Sood, Anil K.
    Chiu, Wah
    BIOPHYSICAL JOURNAL, 2016, 110 (03) : 159A - 159A
  • [25] Hierarchical detection and analysis of macromolecular complexes in cryo-electron tomograms using Pyto software
    Lucic, Vladan
    Fernandez-Busnadiego, Ruben
    Laugks, Ulrike
    Baumeister, Wolfgang
    JOURNAL OF STRUCTURAL BIOLOGY, 2016, 196 (03) : 503 - 514
  • [26] Few-shot learning for classification of novel macromolecular structures in cryo-electron tomograms
    Li, Ran
    Yu, Liangyong
    Zhou, Bo
    Zeng, Xiangrui
    Wang, Zhenyu
    Yang, Xiaoyan
    Zhang, Jing
    Gao, Xin
    Jiang, Rui
    Xu, Min
    PLOS COMPUTATIONAL BIOLOGY, 2020, 16 (11)
  • [27] DETECTION AND IDENTIFICATION OF MACROMOLECULAR COMPLEXES IN CRYO-ELECTRON TOMOGRAMS USING SUPPORT VECTOR MACHINES
    Chen, Yuxiang
    Hrabe, Thomas
    Pfeffer, Stefan
    Pauly, Olivier
    Mateus, Diana
    Navab, Nassir
    Foerster, Friedrich
    2012 9TH IEEE INTERNATIONAL SYMPOSIUM ON BIOMEDICAL IMAGING (ISBI), 2012, : 1373 - 1376
  • [28] Simplified Volumetric Models as an Effective Strategy for Segmenting Actin Networks in Cryo-Electron Tomograms
    Song, Junha
    Auer, Manfred
    JOVE-JOURNAL OF VISUALIZED EXPERIMENTS, 2024, (207):
  • [29] Challenges of Integrating Stochastic Dynamics and Cryo-Electron Tomograms in Whole-Cell Simulations
    Earnest, Tyler M.
    Watanabe, Reika
    Stone, John E.
    Mahamid, Julia
    Baumeister, Wolfgang
    Villa, Elizabeth
    Luthey-Schulten, Zaida
    JOURNAL OF PHYSICAL CHEMISTRY B, 2017, 121 (15): : 3871 - 3881
  • [30] Editorial: Methods in structural biology: Cryo-electron microscopy
    Li, Zongli
    FRONTIERS IN MOLECULAR BIOSCIENCES, 2022, 9