Computational exploration of structural information from cryo-electron tomograms

被引:50
|
作者
Frangakis, AS
Förster, F
机构
[1] European Mol Biol Lab, D-69117 Heidelberg, Germany
[2] Max Planck Inst Biochem, D-82152 Martinsried, Germany
关键词
D O I
10.1016/j.sbi.2004.04.003
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Cryo-electron tomography aims to act as an interface between in vivo cell imaging and techniques achieving atomic resolution. This attempt to bridge the resolution gap is facilitated by recent software and hardware advances. Information provided by atomically resolved macromolecules and molecular interaction data need to be put into a common framework in order to create a hybrid multidimensional cellular image. A major partner in this enterprise is the development of regularization and pattern recognition techniques, which try to identify macromolecular complexes as a function of their structural signature in cryo-electron tomograms of living cells.
引用
收藏
页码:325 / 331
页数:7
相关论文
共 50 条
  • [1] Subtomogram averaging from cryo-electron tomograms
    Leigh, Kendra E.
    Navarro, Paula P.
    Scaramuzza, Stefano
    Chen, Wenbo
    Zhang, Yingyi
    Castano-Diez, Daniel
    Kudryashev, Misha
    [J]. THREE-DIMENSIONAL ELECTRON MICROSCOPY, 2019, 152 : 217 - 259
  • [2] Learning structural heterogeneity from cryo-electron sub-tomograms with tomoDRGN
    Powell, Barrett M.
    Davis, Joseph H.
    [J]. NATURE METHODS, 2024, 21 (08) : 1525 - 1536
  • [3] SHREC 2020: Classification in cryo-electron tomograms
    Gubins, Ilja
    Chaillet, Marten L.
    van der Schot, Gijs
    Veltkamp, Remco C.
    Forster, Friedrich
    Hao, Yu
    Wan, Xiaohua
    Cui, Xuefeng
    Zhang, Fa
    Moebel, Emmanuel
    Wang, Xiao
    Kihara, Daisuke
    Zeng, Xiangrui
    Xu, Min
    Nguyen, Nguyen P.
    White, Tommi
    Bunyak, Filiz
    [J]. COMPUTERS & GRAPHICS-UK, 2020, 91 : 279 - 289
  • [4] Accurate Detection of Proteins in Cryo-Electron Tomograms from Sparse Labels
    Huang, Qinwen
    Zhou, Ye
    Liu, Hsuan-Fu
    Bartesaghi, Alberto
    [J]. COMPUTER VISION, ECCV 2022, PT XXI, 2022, 13681 : 644 - 660
  • [5] Quantifying Variability of Manual Annotation in Cryo-Electron Tomograms
    Hecksel, Corey W.
    Darrow, Michele C.
    Dai, Wei
    Galaz-Montoya, Jesus G.
    Chin, Jessica A.
    Mitchell, Patrick G.
    Chen, Shurui
    Jakana, Jemba
    Schmid, Michael F.
    Chiu, Wah
    [J]. MICROSCOPY AND MICROANALYSIS, 2016, 22 (03) : 487 - 496
  • [6] A machine learning pipeline for membrane segmentation of cryo-electron tomograms
    Zhou, Li
    Yang, Chao
    Gao, Weiguo
    Perciano, Talita
    Davies, Karen M.
    Sauter, Nicholas K.
    [J]. JOURNAL OF COMPUTATIONAL SCIENCE, 2023, 66
  • [7] Removing Contamination-Induced Reconstruction Artifacts from Cryo-electron Tomograms
    Fernandez, Jose-Jesus
    Laugks, Ulrike
    Schaffer, Miroslava
    Baeuerlein, Felix J. B.
    Khoshouei, Maryam
    Baumeister, Wolfgang
    Lucic, Vladan
    [J]. BIOPHYSICAL JOURNAL, 2016, 110 (04) : 850 - 859
  • [8] Deep Learning-Based Segmentation of Cryo-Electron Tomograms
    Heebner, Jessica E.
    Purnell, Carson
    Hylton, Ryan K.
    Marsh, Mike
    Grillo, Michael A.
    Swulius, Matthew T.
    [J]. JOVE-JOURNAL OF VISUALIZED EXPERIMENTS, 2022, (189):
  • [9] Convolutional neural networks for automated annotation of cellular cryo-electron tomograms
    Muyuan Chen
    Wei Dai
    Stella Y Sun
    Darius Jonasch
    Cynthia Y He
    Michael F Schmid
    Wah Chiu
    Steven J Ludtke
    [J]. Nature Methods, 2017, 14 : 983 - 985
  • [10] Volumetric macromolecule identification in cryo-electron tomograms using capsule networks
    Noushin Hajarolasvadi
    Vikram Sunkara
    Sagar Khavnekar
    Florian Beck
    Robert Brandt
    Daniel Baum
    [J]. BMC Bioinformatics, 23