Online Classifiers Based on Fuzzy C-means Clustering

被引:0
|
作者
Jedrzejowicz, Joanna [1 ]
Jedrzejowicz, Piotr [2 ]
机构
[1] Univ Gdansk, Inst Informat, Wita Stwosza 57, PL-80952 Gdansk, Poland
[2] Gdynia Maritime Univ, Dept Informat Syst, PL-81225 Gdynia, Poland
关键词
online learning; fuzzy C-means clustering; DATA STREAMS; CLASSIFICATION;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In the online approach a classifier is, as usual, induced from the available training set. However, in addition, there is also some adaptation mechanism providing for a classifier evolution after the classification task has been initiated and started. In this paper two algorithms for online learning and classification are considered. These algorithms work in rounds, where at each round a new instance is given and the algorithm makes a prediction. After the true class of the instance is revealed, the learning algorithm updates its internal hypothesis. Both algorithms are based on fuzzy C-means clustering followed by calculation of distances between cluster centroids and the incoming instance for which the class label is to be predicted. The proposed approach is validated experimentally. Experiment results show that both proposed classifiers can be considered as a useful extension of the existing range of online classifiers.
引用
收藏
页码:427 / 436
页数:10
相关论文
共 50 条
  • [41] Gaussian Collaborative Fuzzy C-Means Clustering
    Yunlong Gao
    Zhihao Wang
    Huidui Li
    Jinyan Pan
    International Journal of Fuzzy Systems, 2021, 23 : 2218 - 2234
  • [42] Fuzzy Approaches To Hard c-Means Clustering
    Runkler, Thomas A.
    Keller, James M.
    2012 IEEE INTERNATIONAL CONFERENCE ON FUZZY SYSTEMS (FUZZ-IEEE), 2012,
  • [43] Hierarchically Structured Fuzzy c-Means Clustering
    Hye Won Suk
    Ji Yeh Choi
    Heungsun Hwang
    Behaviormetrika, 2013, 40 (1) : 1 - 17
  • [44] Novel possibilistic fuzzy c-means clustering
    School of Electrical and Information Engineering, Jiangsu University, Zhenjiang 212013, China
    不详
    Tien Tzu Hsueh Pao, 2008, 10 (1996-2000):
  • [45] An Accelerated Fuzzy C-Means clustering algorithm
    Hershfinkel, D
    Dinstein, I
    APPLICATIONS OF FUZZY LOGIC TECHNOLOGY III, 1996, 2761 : 41 - 52
  • [46] Suppressed fuzzy C-means clustering algorithm
    Fan, JL
    Zhen, WZ
    Xie, WX
    PATTERN RECOGNITION LETTERS, 2003, 24 (9-10) : 1607 - 1612
  • [47] A Fast Fuzzy C-means Clustering Algorithm Based on Soft and Hard Clustering
    Ji NaiHua
    Yao Huiping
    Wang Yingjie
    PROCEEDINGS OF 2009 INTERNATIONAL CONFERENCE ON INFORMATION, ELECTRONIC AND COMPUTER SCIENCE, VOLS I AND II, 2009, : 638 - 641
  • [48] Relative entropy fuzzy c-means clustering
    Zarinbal, M.
    Zarandi, M. H. Fazel
    Turksen, I. B.
    INFORMATION SCIENCES, 2014, 260 : 74 - 97
  • [49] Diverse fuzzy c-means for image clustering
    Zhang, Lingling
    Luo, Minnan
    Liu, Jun
    Li, Zhihui
    Zheng, Qinghua
    PATTERN RECOGNITION LETTERS, 2020, 130 (130) : 275 - 283
  • [50] Use of optimized Fuzzy C-Means clustering and supervised classifiers for automobile insurance fraud detection
    Subudhi, Sharmila
    Panigrahi, Suvasini
    JOURNAL OF KING SAUD UNIVERSITY-COMPUTER AND INFORMATION SCIENCES, 2020, 32 (05) : 568 - 575