Fast-slow dynamics for parabolic perturbations of conservation laws

被引:4
|
作者
Hubert, F
Serre, D
机构
[1] U. de Mathematiques Pures and Appl., CNRS, UMR 128, 69364 Lyon Cedex 07, 46, allée d'Italie
关键词
D O I
10.1080/03605309608821239
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study the 'large time' behaviour of parabolic perturbations of hyperbolic systems having one linearly degenerate field, the others being genuinely non linear fields. The initial data is periodic. For 'moderated time', the perturbation can often be ignored. For 'large time', the oscillations in non linear modes should be damped whereas the linear one behaves as a travelling wave. Because of the coupling, all the modes are modulated by the slow time. The purpose of the article is three-fold. First we give a mathematical description of this problem by means of an asymptotic expansion. We then formally describe the slow evolution for the Navier-Stokes equations of a compressible viscous heat conductive fluid. Finally, we justify the asymptotic development for a model problem, arising in elasticity theory: the Keyfitz-Kranzer's system.
引用
收藏
页码:1587 / 1608
页数:22
相关论文
共 50 条
  • [41] Multi-rate model predictive control algorithm for systems with fast-slow dynamics
    Zhang, Xinglong
    Farina, Marcello
    Spinelli, Stefano
    Scattolini, Riccardo
    IET CONTROL THEORY AND APPLICATIONS, 2018, 12 (18): : 2468 - 2477
  • [42] Fast-slow dynamics related to sharp transition behaviors in the Rayleigh oscillator with two slow square wave excitations
    Wei, Mengke
    Han, Xiujing
    CHAOS SOLITONS & FRACTALS, 2024, 181
  • [43] The Conley index for fast-slow systems II: Multidimensional slow variable
    Gedeon, T
    Kokubu, H
    Mischaikow, K
    Oka, H
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2006, 225 (01) : 242 - 307
  • [44] Fast-slow diffusion systems with nonlinear boundary conditions
    Wang, MX
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2001, 46 (06) : 893 - 908
  • [45] Bifurcations and fast-slow behaviors in a hyperchaotic dynamical system
    Zheng, Song
    Han, Xiujing
    Bi, Qinsheng
    COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2011, 16 (04) : 1998 - 2005
  • [46] A class of fast-slow models for adaptive resistance evolution
    Perez-Estigarribia, Pastor E.
    Bliman, Pierre-Alexandre
    Schaerer, Christian E.
    THEORETICAL POPULATION BIOLOGY, 2020, 135 : 32 - 48
  • [47] Singular Homoclinic Bifurcations in a Planar Fast-Slow System
    Feng Xie
    Maoan Han
    Weijiang Zhang
    Journal of Dynamical and Control Systems, 2005, 11 : 433 - 448
  • [48] Tracking fast trajectories along a slow dynamics: A singular perturbations approach
    Weizmann Inst of Science, Rehovot, Israel
    SIAM J Control Optim, 5 (1487-1507):
  • [49] DYNAMICAL BIFURCATION OF MULTIFREQUENCY OSCILLATIONS IN A FAST-SLOW SYSTEM
    Samoilenko, A. M.
    Parasyuk, I. O.
    Repeta, B. V.
    UKRAINIAN MATHEMATICAL JOURNAL, 2015, 67 (07) : 1008 - 1037
  • [50] Tracking fast trajectories along a slow dynamics: A singular perturbations approach
    Artstein, Z
    Gaitsgory, V
    SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 1997, 35 (05) : 1487 - 1507