Electrophoretic Deposition of Out-of-Plane Oriented Active Material for Lithium-Ion Batteries

被引:4
|
作者
Esper, Julian D. [1 ]
Helmer, Alexandra [1 ]
Wu, Yanlin [2 ]
Bachmann, Julien [2 ]
Klupp Taylor, Robin N. [1 ]
机构
[1] Friedrich Alexander Univ Erlangen Nurnberg FAU, Inst Particle Technol LFG, Cauerstr 4, D-91058 Erlangen, Germany
[2] Friedrich Alexander Univ Erlangen Nurnberg FAU, Chair Chem Thin Film Mat, IZNF, Cauerstr 3, D-91058 Erlangen, Germany
关键词
electrode architectures; electrophoretic deposition; flake-like hybrid particles; lithium-ion batteries; mica; RATE CAPABILITY; ANODE MATERIAL; GRAPHITE-ELECTRODES; COBALT OXIDE; FABRICATION; FLAKE; ASSEMBLIES; CORROSION; ALUMINUM; SILICON;
D O I
10.1002/ente.202000936
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
The performance of secondary batteries, of which the lithium-ion battery is one of the most well known, depends not only on the active electrode materials but also on the electrode architecture. In particular, the reduction in electrode tortuosity is expected to enable batteries with high active material utilization and fast charging and discharging capabilities. Herein, it is shown how electrophoretic deposition can be used to produce electrodes comprising hybrid particles of cobalt(II,III) oxide-coated rutile-mica oriented in an out-of-plane fashion. Key to this process is a sacrificial anode which leads to charging of the flake-shaped particles and formation of a holding layer cementing them perpendicular to the substrate. Moreover, the electrochemical performance of lithium-ion battery anodes with out-of-plane and in-plane oriented architectures is compared. The out-of-plane orientation of the flake-like particles results in better utilization of active material, lower charge-transfer impedance, and faster ion diffusion. Moreover, for a range of charge/discharge rates, the specific capacity is over three times higher in comparison to an electrode with the same material oriented in an in-plane architecture. The approach to electrode structuring is both facile and scalable and can be readily applied in the future to produce other electrochemical energy storage device electrodes.
引用
收藏
页数:8
相关论文
共 50 条
  • [21] Electrophoretic Deposition of Binder-Free MnO2/Graphene Films for Lithium-Ion Batteries
    Xu, Tao
    Meng, Qinghan
    Fan, Qiang
    Yang, Meng
    Zhi, Wanyuan
    Cao, Bing
    CHINESE JOURNAL OF CHEMISTRY, 2017, 35 (10) : 1575 - 1585
  • [22] Effects of Electrolyte Additives on the Suppression of Mn Deposition on Edge Plane Graphite for Lithium-Ion Batteries
    Ochida, Manabu
    Doi, Takayuki
    Domi, Yasuhiro
    Tsubouchi, Shigetaka
    Nakagawa, Hiroe
    Yamanaka, Toshiro
    Abe, Takeshi
    Ogumi, Zempachi
    JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2013, 160 (02) : A410 - A413
  • [23] Theoretical investigation of pillar[4]quinone as a cathode active material for lithium-ion batteries
    Huan, Long
    Xie, Ju
    Chen, Ming
    Diao, Guowang
    Zhao, Rongfang
    Zuo, Tongfei
    JOURNAL OF MOLECULAR MODELING, 2017, 23 (04)
  • [24] Effect of the active material type and battery geometry on the thermal behavior of lithium-ion batteries
    Miranda, D.
    Almeida, A. M.
    Lanceros-Mendez, S.
    Costa, C. M.
    ENERGY, 2019, 185 : 1250 - 1262
  • [25] Theoretical investigation of pillar[4]quinone as a cathode active material for lithium-ion batteries
    Long Huan
    Ju Xie
    Ming Chen
    Guowang Diao
    Rongfang Zhao
    Tongfei Zuo
    Journal of Molecular Modeling, 2017, 23
  • [26] Applications of Microalgae and Macroalgae Biomass as an Anode Active Material and Binder in Lithium-ion Batteries
    Cetintasoglu, Mehmet Emre
    Taskin, Omer Suat
    Aksu, Abdullah
    Eryalcin, Kamil Mert
    Keles, Ozgul
    Caglar, Nuray
    TURKISH JOURNAL OF FISHERIES AND AQUATIC SCIENCES, 2024, 24 (12)
  • [27] LiVPO4F:: A new active material for safe lithium-ion batteries
    Gover, R. K. B.
    Burns, P.
    Bryan, A.
    Saidi, M. Y.
    Swoyer, J. L.
    Barker, J.
    SOLID STATE IONICS, 2006, 177 (26-32) : 2635 - 2638
  • [28] Lithium Lanthanum Titanate derived from Lanthanum Oxalate as the Anode Active Material in Lithium-ion Batteries
    Ma'dika, Benediktus
    Pravitasari, Retna Deca
    Tasomara, Riesma
    Hapsari, Ade Utami
    Damisih
    Rahayu, Sri
    Yuliani, Hanif
    Arjasa, Oka Pradipta
    Herdianto, Nendar
    Deni, Yelvia
    Suyanti
    Syahrial, Anne Zulfia
    Somalu, Mahendra Rao
    Raharjo, Jarot
    INTERNATIONAL JOURNAL OF INTEGRATED ENGINEERING, 2022, 14 (02): : 138 - 145
  • [29] Anatase Nanotubes as an Electrode Material for Lithium-Ion Batteries
    Zakharova, G. S.
    Jaehne, C.
    Popa, A.
    Taeschner, Ch.
    Gemming, Th.
    Leonhardt, A.
    Buechner, B.
    Klingeler, R.
    JOURNAL OF PHYSICAL CHEMISTRY C, 2012, 116 (15): : 8714 - 8720
  • [30] Synthetic hureaulite as anode material for lithium-ion batteries
    Pan, Meng-Yao
    Lu, Si-Tong
    Li, Yan-Yan
    Fan, Yang
    JOURNAL OF APPLIED ELECTROCHEMISTRY, 2023, 53 (05) : 1015 - 1022