Deep Temporal-Spatial Feature Learning for Motor Imagery-Based Brain-Computer Interfaces

被引:53
|
作者
Chen, Junjian [1 ,2 ]
Yu, Zhuliang [1 ,2 ]
Gu, Zhenghui [1 ,2 ]
Li, Yuanqing [1 ,2 ]
机构
[1] South China Univ Technol, Coll Automat Sci & Engn, Guangzhou 510641, Peoples R China
[2] Pazhou Lab, Guangzhou 510335, Peoples R China
基金
中国国家自然科学基金;
关键词
Electroencephalography; Training; Band-pass filters; Decoding; Feature extraction; Machine learning; Brain-computer interfaces; Motor imagery (MI); electroencephalography (EEG); deep learning; convolutional neural network (CNN); triplet loss; NEURAL-NETWORKS; EEG; CLASSIFICATION; EEG/MEG; FILTERS;
D O I
10.1109/TNSRE.2020.3023417
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
Motor imagery (MI) decoding is an important part of brain-computer interface (BCI) research, which translates the subject's intentions into commands that external devices can execute. The traditional methods for discriminative feature extraction, such as common spatial pattern (CSP) and filter bank common spatial pattern (FBCSP), have only focused on the energy features of the electroencephalography (EEG) and thus ignored the further exploration of temporal information. However, the temporal information of spatially filtered EEG may be critical to the performance improvement of MI decoding. In this paper, we proposed a deep learning approach termed filter-bank spatial filtering and temporal-spatial convolutional neural network (FBSF-TSCNN) for MI decoding, where the FBSF block transforms the raw EEG signals into an appropriate intermediate EEG presentation, and then the TSCNN block decodes the intermediate EEG signals. Moreover, a novel stage-wise training strategy is proposed to mitigate the difficult optimization problem of the TSCNN block in the case of insufficient training samples. Firstly, the feature extraction layers are trained by optimization of the triplet loss. Then, the classification layers are trained by optimization of the cross-entropy loss. Finally, the entire network (TSCNN) is fine-tuned by the back-propagation (BP) algorithm. Experimental evaluations on the BCI IV 2a and SMR-BCI datasets reveal that the proposed stage-wise training strategy yields significant performance improvement compared with the conventional end-to-end training strategy, and the proposed approach is comparable with the state-of-the-art method.
引用
收藏
页码:2356 / 2366
页数:11
相关论文
共 50 条
  • [41] The backtracking search optimization algorithm for frequency band and time segment selection in motor imagery-based brain-computer interfaces
    Wei, Zhonghai
    Wei, Qingguo
    JOURNAL OF INTEGRATIVE NEUROSCIENCE, 2016, 15 (03) : 347 - 364
  • [42] A clinical evaluation on the spatial patterns of non-invasive motor imagery-based brain-computer interface in stroke
    Ang, Kai Keng
    Guan, Cuntai
    Chua, Karen Sui Geok
    Ang, Beng Ti
    Kuah, Christopher
    Wang, Chuanchu
    Phua, Kok Soon
    Chin, Zheng Yang
    Zhang, Haihong
    2008 30TH ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY, VOLS 1-8, 2008, : 4174 - +
  • [43] An Impending Paradigm Shift in Motor Imagery Based Brain-Computer Interfaces
    Papadopoulos, Sotirios
    Bonaiuto, James
    Mattout, Jeremie
    FRONTIERS IN NEUROSCIENCE, 2022, 15
  • [44] Phase-based features for Motor Imagery Brain-Computer Interfaces
    Hamner, Benjamin
    Leeb, Robert
    Tavella, Michele
    Millan, Jose del R.
    2011 ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY (EMBC), 2011, : 2578 - 2581
  • [45] A correntropy-based classifier for motor imagery brain-computer interfaces
    Suarez Uribe, Luisa Fernanda
    Stefano Filho, Carlos Alberto
    de Oliveira, Vinicius Alves
    da Silva Costa, Thiago Bulhoes
    Rodrigues, Paula Gabrielly
    Soriano, Diogo Coutinho
    Boccato, Levy
    Castellano, Gabriela
    Attux, Romis
    BIOMEDICAL PHYSICS & ENGINEERING EXPRESS, 2019, 5 (06):
  • [46] ADAPTIVE DIMENSIONALITY REDUCTION METHOD USING GRAPH-BASED SPECTRAL DECOMPOSITION FOR MOTOR IMAGERY-BASED BRAIN-COMPUTER INTERFACES
    Kalantar, Golnar
    Sadreazami, Hamidreza
    Mohammadi, Arash
    Asif, Amir
    2017 IEEE GLOBAL CONFERENCE ON SIGNAL AND INFORMATION PROCESSING (GLOBALSIP 2017), 2017, : 981 - 985
  • [47] Neurophysiological substrates of stroke patients with motor imagery-based brain-computer interface training
    Li, Mingfen
    Liu, Ye
    Wu, Yi
    Liu, Sirao
    Jia, Jie
    Zhang, Liqing
    INTERNATIONAL JOURNAL OF NEUROSCIENCE, 2014, 124 (06) : 403 - 415
  • [48] Feature Selection Combining Filter and Wrapper Methods for Motor-Imagery Based Brain-Computer Interfaces
    Sun, Hao
    Jin, Jing
    Xu, Ren
    Cichocki, Andrzej
    INTERNATIONAL JOURNAL OF NEURAL SYSTEMS, 2021, 31 (09)
  • [49] Sequential Transfer Learning via Segment After Cue Enhances the Motor Imagery-based Brain-Computer Interface
    Kim, Dong-Kyu
    Kim, Young-Tak
    Jung, Hee-Ra
    Kim, Hakseung
    Kim, Dong-Joo
    2021 9TH IEEE INTERNATIONAL WINTER CONFERENCE ON BRAIN-COMPUTER INTERFACE (BCI), 2021, : 318 - 322
  • [50] A Robust Low-Cost EEG Motor Imagery-Based Brain-Computer Interface
    Yohanandan, Shivanthan A. C.
    Kiral-Kornek, Isabell
    Tang, Jianbin
    Mshford, Benjamin S.
    Asif, Umar
    Harrer, Stefan
    2018 40TH ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY (EMBC), 2018, : 5089 - 5092