Combination of snapshot hyperspectral retinal imaging and optical coherence tomography to identify Alzheimer's disease patients

被引:45
|
作者
Lemmens, Sophie [1 ,2 ,3 ]
Van Craenendonck, Toon [3 ]
Van Eijgen, Jan [1 ,2 ,3 ]
De Groef, Lies [4 ]
Bruffaerts, Rose [5 ,6 ]
de Jesus, Danilo Andrade [2 ]
Charle, Wouter [7 ]
Jayapala, Murali [7 ]
Sunaric-Megevand, Gordana [8 ]
Standaert, Arnout [3 ]
Theunis, Jan [3 ]
Van Keer, Karel [1 ,2 ]
Vandenbulcke, Mathieu [9 ]
Moons, Lieve [4 ]
Vandenberghe, Rik [5 ,6 ,10 ]
De Boever, Patrick [3 ,11 ,12 ]
Stalmans, Ingeborg [1 ,2 ]
机构
[1] Univ Hosp UZ Leuven, Dept Ophthalmol, Herestr 49, B-3000 Leuven, Belgium
[2] Katholieke Univ Leuven, Res Grp Ophthalmol, Biomed Sci Grp, Dept Neurosci, Herestr 49, B-3000 Leuven, Belgium
[3] VITO Flemish Inst Technol Res, Hlth Unit, Boeretang 200, B-2400 Mol, Belgium
[4] Katholieke Univ Leuven, Neural Circuit Dev & Regenerat Res Grp, Dept Biol, Naamsestr 61, B-3000 Leuven, Belgium
[5] Katholieke Univ Leuven, Dept Neurosci, Lab Cognit Neurol, Herestr 49, B-3000 Leuven, Belgium
[6] Univ Hosp UZ Leuven, Dept Neurol, Herestr 49, B-3000 Leuven, Belgium
[7] IMEC, Kapeldreef 75, B-3001 Leuven, Belgium
[8] Mem A Rothschild, Clin Res Ctr, 22 Chemin Beau Soleil, CH-1208 Geneva, Switzerland
[9] Univ Hosp Leuven, Div Psychiat, Herestr 49, B-3000 Leuven, Belgium
[10] Alzheimer Res Ctr KU Leuven, Leuven Brain Inst, Herestr 49, B-3000 Leuven, Belgium
[11] Hasselt Univ, Ctr Environm Sci, B-3590 Diepenbeek, Belgium
[12] Univ Antwerp, Dept Biol, Univ Pl 1, B-2610 Antwerp, Belgium
基金
欧盟地平线“2020”;
关键词
Retina; Brain; Neurodegeneration; Cognitive impairment; Alzheimer’ s disease; Amyloid-beta (Aβ Hyperspectral imaging; Machine learning; Biomarker; FIBER LAYER THICKNESS; DEGENERATION; ABNORMALITIES; DIAGNOSIS; AMYLOIDOPATHY; BIOMARKERS; SEVERITY; EYES;
D O I
10.1186/s13195-020-00715-1
中图分类号
R74 [神经病学与精神病学];
学科分类号
摘要
Introduction The eye offers potential for the diagnosis of Alzheimer's disease (AD) with retinal imaging techniques being explored to quantify amyloid accumulation and aspects of neurodegeneration. To assess these changes, this proof-of-concept study combined hyperspectral imaging and optical coherence tomography to build a classification model to differentiate between AD patients and controls. Methods In a memory clinic setting, patients with a diagnosis of clinically probable AD (n = 10) or biomarker-proven AD (n = 7) and controls (n = 22) underwent non-invasive retinal imaging with an easy-to-use hyperspectral snapshot camera that collects information from 16 spectral bands (460-620 nm, 10-nm bandwidth) in one capture. The individuals were also imaged using optical coherence tomography for assessing retinal nerve fiber layer thickness (RNFL). Dedicated image preprocessing analysis was followed by machine learning to discriminate between both groups. Results Hyperspectral data and retinal nerve fiber layer thickness data were used in a linear discriminant classification model to discriminate between AD patients and controls. Nested leave-one-out cross-validation resulted in a fair accuracy, providing an area under the receiver operating characteristic curve of 0.74 (95% confidence interval [0.60-0.89]). Inner loop results showed that the inclusion of the RNFL features resulted in an improvement of the area under the receiver operating characteristic curve: for the most informative region assessed, the average area under the receiver operating characteristic curve was 0.70 (95% confidence interval [0.55, 0.86]) and 0.79 (95% confidence interval [0.65, 0.93]), respectively. The robust statistics used in this study reduces the risk of overfitting and partly compensates for the limited sample size. Conclusions This study in a memory-clinic-based cohort supports the potential of hyperspectral imaging and suggests an added value of combining retinal imaging modalities. Standardization and longitudinal data on fully amyloid-phenotyped cohorts are required to elucidate the relationship between retinal structure and cognitive function and to evaluate the robustness of the classification model.
引用
收藏
页数:13
相关论文
共 50 条
  • [21] Retinal imaging by spectral optical coherence tomography
    Kaluzny, J. J.
    Szkulmowska, A.
    Bajraszewski, T.
    Szkulmowski, M.
    Kaluzny, B. J.
    Gorczynska, I.
    Targowski, P.
    Wojtkowski, M.
    EUROPEAN JOURNAL OF OPHTHALMOLOGY, 2007, 17 (02) : 238 - 245
  • [22] Optical Coherence Tomography Angiography in Preclinical Alzheimer's Disease
    van de Kreeke, J. A.
    Nguyen, H. T.
    Konijnenberg, E.
    Tomassen, J.
    den Braber, A.
    ten Kate, M.
    Yaqub, M.
    van Berckel, B.
    Boomsma, D. I.
    Tan, H. S.
    Visser, P. J.
    Verbraak, F. D.
    ACTA OPHTHALMOLOGICA, 2019, 97 : 33 - 33
  • [23] Pitfalls in retinal optical coherence tomography imaging
    Schmitz-Valckenberg, S.
    Brinkmann, C. K.
    Fleckenstein, M.
    Heimes, B.
    Liakopoulos, S.
    Spital, G.
    Holz, F. G.
    OPHTHALMOLOGE, 2017, 114 (03): : 275 - 288
  • [24] Reliability and validity of Cirrus and Spectralis optical coherence tomography for detecting retinal atrophy in Alzheimer's disease
    Polo, V.
    Garcia-Martin, E.
    Bambo, M. P.
    Pinilla, J.
    Larrosa, J. M.
    Satue, M.
    Otin, S.
    Pablo, L. E.
    EYE, 2014, 28 (06) : 680 - 690
  • [25] Reliability and validity of Cirrus and Spectralis optical coherence tomography for detecting retinal atrophy in Alzheimer’s disease
    V Polo
    E Garcia-Martin
    M P Bambo
    J Pinilla
    J M Larrosa
    M Satue
    S Otin
    L E Pablo
    Eye, 2014, 28 : 680 - 690
  • [26] Retinal microvascular attenuation in mental cognitive impairment and Alzheimer's disease by optical coherence tomography angiography
    Wu, Jing
    Zhang, Xiaojun
    Azhati, Guliqiwaer
    Li, Tingting
    Xu, Guoxing
    Liu, Fang
    ACTA OPHTHALMOLOGICA, 2020, 98 (06) : E781 - E787
  • [27] Retinal and Choriocapillaris Vascular Changes in Early Alzheimer Disease Patients Using Optical Coherence Tomography Angiography
    Di Pippo, Mariachiara
    Cipollini, Virginia
    Giubilei, Franco
    Scuderi, Gianluca
    Abdolrahimzadeh, Solmaz
    JOURNAL OF NEURO-OPHTHALMOLOGY, 2024, 44 (02) : 184 - 189
  • [28] Optical Coherence Tomography in Patients with Alzheimer's Disease: What Can It Tell Us?
    Song, Ailin
    Johnson, Nicholas
    Ayala, Alexandria
    Thompson, Atalie C.
    EYE AND BRAIN, 2021, 13 : 1 - 20
  • [29] Comparison of Retinal Microvasculature in Patients With Alzheimer's Disease and Primary Open-Angle Glaucoma by Optical Coherence Tomography Angiography
    Zabel, Przemyslaw
    Kaluzny, Jakub J.
    Wilkosc-Debczynska, Monika
    Gebska-Toloczko, Martyna
    Suwala, Karolina
    Zabel, Katarzyna
    Zaron, Agata
    Kucharski, Robert
    Araszkiewicz, Aleksander
    INVESTIGATIVE OPHTHALMOLOGY & VISUAL SCIENCE, 2019, 60 (10) : 3447 - 3455
  • [30] Quantitative assessment of retinal thickness and vessel density using optical coherence tomography angiography in patients with Alzheimer's disease and glaucoma
    Zabel, Przemyslaw
    Kaluzny, Jakub J.
    Zabel, Katarzyna
    Kaluzna, Martyna
    Lamkowski, Aleksander
    Jaworski, Damian
    Makowski, Jaroslaw
    Gebska-Toloczko, Martyna
    Kucharski, Robert
    PLOS ONE, 2021, 16 (03):