Multivariate LSTM-FCNs for time series classification

被引:586
|
作者
Karim, Fazle [1 ]
Majumdar, Somshubra [2 ]
Darabi, Houshang [1 ]
Harford, Samuel [1 ]
机构
[1] Univ Illinois, Mech & Ind Engn, 900 W Taylor St, Chicago, IL 60607 USA
[2] Univ Illinois, Comp Sci, 900 W Taylor St, Chicago, IL 60607 USA
关键词
Convolutional neural network; Long short term memory; Recurrent neural network; Multivariate time series classification; NEURAL-NETWORKS; REPRESENTATION;
D O I
10.1016/j.neunet.2019.04.014
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Over the past decade, multivariate time series classification has received great attention. We propose transforming the existing univariate time series classification models, the Long Short Term Memory Fully Convolutional Network (LSTM-FCN) and Attention LSTM-FCN (ALSTM-FCN), into a multivariate time series classification model by augmenting the fully convolutional block with a squeeze-and-excitation block to further improve accuracy. Our proposed models outperform most state-of-the-art models while requiring minimum preprocessing. The proposed models work efficiently on various complex multivariate time series classification tasks such as activity recognition or action recognition. Furthermore, the proposed models are highly efficient at test time and small enough to deploy on memory constrained systems. (C) 2019 Elsevier Ltd. All rights reserved.
引用
收藏
页码:237 / 245
页数:9
相关论文
共 50 条
  • [41] Using DenseNet for IoT multivariate time series classification
    Azar, Joseph
    Makhoul, Abdallah
    Couturier, Raphael
    2020 IEEE SYMPOSIUM ON COMPUTERS AND COMMUNICATIONS (ISCC), 2020, : 33 - 38
  • [42] Uncertainty-based Multivariate Time Series Classification
    Zhang X.
    Zhang L.
    Jin B.
    Zhang H.-Z.
    Zidonghua Xuebao/Acta Automatica Sinica, 2023, 49 (04): : 790 - 804
  • [43] ClaRe: Classification and Regression Tool for Multivariate Time Series
    Cachucho, Ricardo
    Paraschiakos, Stylianos
    Liu, Kaihua
    van der Burgh, Benjamin
    Knobbe, Arno
    MACHINE LEARNING AND KNOWLEDGE DISCOVERY IN DATABASES, ECML PKDD 2018, PT III, 2019, 11053 : 682 - 686
  • [44] A Versatile Approach to Classification of Multivariate Time Series Data
    Zagorecki, Adam
    PROCEEDINGS OF THE 2015 FEDERATED CONFERENCE ON COMPUTER SCIENCE AND INFORMATION SYSTEMS, 2015, 5 : 407 - 410
  • [45] Tensorized LSTM with Adaptive Shared Memory for Learning Trends in Multivariate Time Series
    Xu, Dongkuan
    Cheng, Wei
    Zong, Bo
    Song, Dongjin
    Ni, Jingchao
    Yu, Wenchao
    Liu, Yanchi
    Chen, Haifeng
    Zhang, Xiang
    THIRTY-FOURTH AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE, THE THIRTY-SECOND INNOVATIVE APPLICATIONS OF ARTIFICIAL INTELLIGENCE CONFERENCE AND THE TENTH AAAI SYMPOSIUM ON EDUCATIONAL ADVANCES IN ARTIFICIAL INTELLIGENCE, 2020, 34 : 1395 - 1402
  • [46] Multivariate Time Series Data Prediction Based on ATT-LSTM Network
    Ju, Jie
    Liu, Fang-Ai
    APPLIED SCIENCES-BASEL, 2021, 11 (20):
  • [47] Prediction of heavy metal content in multivariate chaotic time series based on LSTM
    Wang, Shengwei
    Lou, Tianlong
    Zhang, Chang
    Hao, Ji
    Zhan, Yulin
    Ping, Li
    DESALINATION AND WATER TREATMENT, 2020, 197 : 249 - 260
  • [48] Multivariate time series classification with parametric derivative dynamic time warping
    Gorecki, Tomasz
    Luczak, Maciej
    EXPERT SYSTEMS WITH APPLICATIONS, 2015, 42 (05) : 2305 - 2312
  • [49] Self-supervised Classification of Clinical Multivariate Time Series using Time Series Dynamics
    Yehuda, Yakir
    Freedman, Daniel
    Radinsky, Kira
    PROCEEDINGS OF THE 29TH ACM SIGKDD CONFERENCE ON KNOWLEDGE DISCOVERY AND DATA MINING, KDD 2023, 2023, : 5416 - 5427
  • [50] Arrhythmia classification of LSTM autoencoder based on time series anomaly detection
    Liu, Pengfei
    Sun, Xiaoming
    Han, Yang
    He, Zhishuai
    Zhang, Weifeng
    Wu, Chenxu
    BIOMEDICAL SIGNAL PROCESSING AND CONTROL, 2022, 71