On the robustness of jump linear quadratic control

被引:0
|
作者
Boukas, EK [1 ]
Swierniak, A [1 ]
Yang, H [1 ]
机构
[1] SILESIAN TECH UNIV, DEPT AUTOMAT CONTROL, PL-44101 GLIWICE, POLAND
关键词
piecewise deterministic system; stochastic stability; Markov process; jump linear quadratic regulator; guaranteed cost control;
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
This paper deals with the problem of how to render the jump linear quadratic (JLQ) control robust. Mainly, we present sufficient conditions for quadratic stabilization and guaranteed cost control of uncertain jump linear system using state feedback control. The proposed control law contains two components. The first one is a JLQ control law, while the second is a nonlinear bounded term to render the system robust and whose cost is not included in the performance index. (C) 1997 by John Wiley & Sons, Ltd.
引用
收藏
页码:899 / 910
页数:12
相关论文
共 50 条
  • [31] CONTROLLABILITY, OBSERVABILITY AND DISCRETE-TIME MARKOVIAN JUMP LINEAR QUADRATIC CONTROL
    JI, YD
    CHIZECK, HJ
    INTERNATIONAL JOURNAL OF CONTROL, 1988, 48 (02) : 481 - 498
  • [32] Performance-Robustness Tradeoffs in Adversarially Robust Linear-Quadratic Control
    Lee, Bruce D.
    Zhang, Thomas T. C. K.
    Hassani, Hamed
    Matni, Nikolai
    2022 IEEE 61ST CONFERENCE ON DECISION AND CONTROL (CDC), 2022, : 3416 - 3423
  • [33] ROBUSTNESS RESULTS IN LINEAR-QUADRATIC GAUSSIAN BASED MULTIVARIABLE CONTROL DESIGNS
    LEHTOMAKI, NA
    SANDELL, NR
    ATHANS, M
    IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 1981, 26 (01) : 75 - 92
  • [34] Jump linear quadratic Gaussian problem for a class of nonhomogeneous Markov jump linear systems
    Zhu, Jin
    Zhang, Gaosheng
    Xie, Wanqing
    OPTIMAL CONTROL APPLICATIONS & METHODS, 2017, 38 (04): : 668 - 680
  • [35] Pricing Design for Robustness in Linear Quadratic Games
    Calderone, Daniel J.
    Ratliff, Lillian J.
    Sastry, S. Shankar
    2013 IEEE 52ND ANNUAL CONFERENCE ON DECISION AND CONTROL (CDC), 2013, : 4349 - 4354
  • [36] The linear quadratic optimal control problem for discrete-time Markov jump linear singular systems
    Chavez-Fuentes, Jorge R.
    Costa, Eduardo F.
    Terra, Marco H.
    Rocha, Kaio D. T.
    AUTOMATICA, 2021, 127
  • [37] GENERALIZED ROBUSTNESS OF OPTIMALITY OF LINEAR QUADRATIC REGULATORS
    SUGIMOTO, K
    YAMAMOTO, Y
    INTERNATIONAL JOURNAL OF CONTROL, 1990, 51 (03) : 521 - 533
  • [38] Remarks on Stability Robustness of Linear Quadratic Regulators
    Kim, Yoonsoo
    2017 17TH INTERNATIONAL CONFERENCE ON CONTROL, AUTOMATION AND SYSTEMS (ICCAS), 2017, : 452 - 453
  • [39] Robustness for uncertain linear quadratic regulator systems
    Huang, Su-Nan
    Shao, Hui-He
    Advances in modelling & simulation, 1995, 45 (1-3): : 31 - 40
  • [40] Finite horizon quadratic optimal control and a separation principle for Markovian jump linear systems
    Costa, OLV
    Tuesta, EF
    IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2003, 48 (10) : 1836 - 1842