An optimization Method for Intrusion Detection Classification Model Based on Deep Belief Network

被引:62
|
作者
Wei, Peng [1 ]
Li, Yufeng [2 ]
Zhang, Zhen [1 ]
Hu, Tao [1 ]
Li, Ziyong [1 ]
Liu, Diyang [1 ]
机构
[1] Natl Digital Switching Syst Engn Technol Res Ctr, Zhengzhou 450002, Henan, Peoples R China
[2] Shanghai Univ, Sch Comp Engn & Sci, Shanghai 200444, Peoples R China
来源
IEEE ACCESS | 2019年 / 7卷
基金
中国国家自然科学基金;
关键词
Intrusion detection; deep belief network; particle swarm optimization; artificial fish swarm algorithm; genetic algorithm;
D O I
10.1109/ACCESS.2019.2925828
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
The rapid development and popularization of the network have brought many problems to network security. Intrusion detection technology is often used as an effective security technology to protect the network. The deep belief network (DBN), as a classic model of deep learning, has good classification performance and is often used in the field of intrusion detection. However, the network structure of DBN is generally set through practical experience. For the optimization problem of the DBN-based intrusion detection classification model (DBN-IDS), this paper proposes a new joint optimization algorithm to optimize the DBN's network structure. First, we design a particle swarm optimization (PSO) based on the adaptive inertia weight and learning factor. Second, we use the fish swarm behavior of cluster, foraging, and other behaviors to optimize the PSO to find the initial optimization solution. Then, based on the initial optimization solution, we use the genetic operators with self-adjusting crossover probability and mutation probability to optimize the PSO to search the global optimization solution. Finally, the global optimization solution constructed by the above-mentioned joint optimization algorithm is used as the network structure of the intrusion detection classification model. The experimental results show that compared with other DBN-IDS optimization algorithms, our algorithm shortens the average detection time by at least 24.69% on the premise of increasing the average training time by 6.9%; compared with the tested classification algorithms, our DBN-IDS improves the average classification accuracy by at least 1.3% and up to 14.80% in the five-category classification, which is proved to be an efficient DBN-IDS optimization method.
引用
收藏
页码:87593 / 87605
页数:13
相关论文
共 50 条
  • [21] Dynamic Deep Forest: An Ensemble Classification Method for Network Intrusion Detection
    Hu, Bo
    Wang, Jinxi
    Zhu, Yifan
    Yang, Tan
    ELECTRONICS, 2019, 8 (09)
  • [22] Intrusion Detection using Deep Belief Network and Probabilistic Neural Network
    Zhao, Guangzhen
    Zhang, Cuixiao
    Zheng, Lijuan
    2017 IEEE INTERNATIONAL CONFERENCE ON COMPUTATIONAL SCIENCE AND ENGINEERING (CSE) AND IEEE/IFIP INTERNATIONAL CONFERENCE ON EMBEDDED AND UBIQUITOUS COMPUTING (EUC), VOL 1, 2017, : 639 - 642
  • [23] Optimal Deep Belief Network Enabled Malware Detection and Classification Model
    Chandran, P. Pandi
    Rajini, N. Hema
    Jeyakarthic, M.
    INTELLIGENT AUTOMATION AND SOFT COMPUTING, 2023, 35 (03): : 3349 - 3364
  • [24] Anas platyrhynchos optimizer with deep belief network-based sarcasm detection and classification model
    Dakshnamoorthy, Vinoth
    Prabhavathy, Panneer
    JOURNAL OF ELECTRONIC IMAGING, 2023, 32 (05)
  • [25] Network Intrusion Detection Method Based on Relevance Deep Learning
    Jing, Li
    Bin, Wang
    2016 INTERNATIONAL CONFERENCE ON INTELLIGENT TRANSPORTATION, BIG DATA & SMART CITY (ICITBS), 2017, : 237 - 240
  • [26] Intrusion detection method based on a deep convolutional neural network
    Zhang S.
    Xie X.
    Xu Y.
    Qinghua Daxue Xuebao/Journal of Tsinghua University, 2019, 59 (01): : 44 - 52
  • [27] An Intrusion Detection System Based on Deep Belief Networks
    Belarbi, Othmane
    Khan, Aftab
    Carnelli, Pietro
    Spyridopoulos, Theodoros
    SCIENCE OF CYBER SECURITY, SCISEC 2022, 2022, 13580 : 377 - 392
  • [28] An Evolutionary Computation Based Classification Model for Network Intrusion Detection
    Panigrahi, Ashalata
    Patra, Manas Ranjan
    DISTRIBUTED COMPUTING AND INTERNET TECHNOLOGY, ICDCIT 2015, 2015, 8956 : 318 - 324
  • [29] Recurrent Neural Networks Based Wireless Network Intrusion Detection and Classification Model Construction and Optimization
    Chen Hongsong
    Chen Jingjiu
    JOURNAL OF ELECTRONICS & INFORMATION TECHNOLOGY, 2019, 41 (06) : 1427 - 1433
  • [30] Introducing a Classification Model Based on SVM for Network Intrusion Detection
    Dastfal, Ghodratolah
    Nejatian, Samad
    Parvin, Hamid
    Rezaie, Vahideh
    ADVANCES IN SOFT COMPUTING, MICAI 2017, PT I, 2018, 10632 : 54 - 66