Interpretation of MR images using self-organizing maps and knowledge-based expert systems

被引:24
|
作者
Gueler, Inan [1 ]
Demirhan, Ayse [1 ]
Karakis, Rukiye [1 ]
机构
[1] Gazi Univ, Fac Technol, Dept Elect & Comp Technol, TR-06500 Ankara, Turkey
关键词
MR images; Image segmentation; Self-organizing maps; Knowledge-based expert systems; NEURAL NETWORKS; SEGMENTATION; CLASSIFICATION;
D O I
10.1016/j.dsp.2008.08.002
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
A new image segmentation system is presented to automatically segment and label brain magnetic resonance (MR) images to show normal and abnormal brain tissues using self-organizing maps (SOM) and knowledge-based expert systems. Elements of a feature vector are formed by image intensities. first-order features, texture features extracted from gray-level co-occurrence matrix and multiscale features. This feature vector is used as an input to the SOM. SOM is used to over segment images and a knowledge-based expert system is used to join and label the segments. Spatial distributions of segments extracted from the SOM are also considered as well as gray level properties. Segments are labeled as background, skull, white matter, gray matter, cerebrospinal fluid (CSF) and suspicious regions. (c) 2008 Elsevier Inc. All rights reserved.
引用
收藏
页码:668 / 677
页数:10
相关论文
共 50 条
  • [31] Regional analysis using self-organizing maps
    Chudy, L
    Farkas, I
    POLITICKA EKONOMIE, 2000, 48 (05) : 685 - 697
  • [32] Wireless localization using self-organizing maps
    Giorgetti, Gianni
    Gupta, Sandeep K. S.
    Manes, Gianfranco
    PROCEEDINGS OF THE SIXTH INTERNATIONAL SYMPOSIUM ON INFORMATION PROCESSING IN SENSOR NETWORKS, 2007, : 293 - 302
  • [33] Shape indexing using self-organizing maps
    Suganthan, PN
    IEEE TRANSACTIONS ON NEURAL NETWORKS, 2002, 13 (04): : 835 - 840
  • [34] Project Management Using Self-Organizing Maps
    Parvizian, Jamshid
    Tarkesh, Named
    Atighehchian, Arezoo
    Farid, Sara
    INDUSTRIAL ENGINEERING AND MANAGEMENT SYSTEMS, 2005, 5 (01): : 23 - 31
  • [35] Data mining and knowledge discovery in medical applications using self-organizing maps
    Villmann, T
    Hermann, W
    Geyer, M
    MEDICAL DATA ANALYSIS, PROCEEDINGS, 2000, 1933 : 138 - 151
  • [36] Color clustering using self-organizing maps
    Zhang, Xiao-Yu
    Chen, Jiu-Sheng
    Dong, Jian-Kang
    2007 INTERNATIONAL CONFERENCE ON WAVELET ANALYSIS AND PATTERN RECOGNITION, VOLS 1-4, PROCEEDINGS, 2007, : 986 - +
  • [37] Novelty detection using Self-Organizing Maps
    Ypma, A
    Duin, RPW
    PROGRESS IN CONNECTIONIST-BASED INFORMATION SYSTEMS, VOLS 1 AND 2, 1998, : 1322 - 1325
  • [38] Similarity retrieval based on self-organizing maps
    Im, DJ
    Lee, M
    Lee, YK
    Kim, TE
    Lee, S
    Lee, J
    Lee, KK
    Cho, KD
    COMPUTATIONAL SCIENCE AND ITS APPLICATIONS - ICCSA 2005, PT 2, 2005, 3481 : 474 - 482
  • [39] Organizing spectral image database using Self-Organizing Maps
    Kohonen, O
    Jääskeläinen, T
    Hauta-Kasari, M
    Parkkinen, J
    Miyazawa, K
    JOURNAL OF IMAGING SCIENCE AND TECHNOLOGY, 2005, 49 (04) : 431 - 441
  • [40] A Causal Model Using Self-Organizing Maps
    Chung, Younjin
    Takatsuka, Masahiro
    NEURAL INFORMATION PROCESSING, PT II, 2015, 9490 : 591 - 600