Explainability in deep reinforcement learning

被引:151
|
作者
Heuillet, Alexandre [1 ]
Couthouis, Fabien [2 ]
Diaz-Rodriguez, Natalia [3 ]
机构
[1] Bordeaux INP, ENSEIRB MATMECA, 1 Ave Docteur Albert Schweitzer, F-33400 Talence, France
[2] Bordeaux INP, ENSC, 109 Ave Roul, F-33400 Talence, France
[3] Inst Polytech Paris, Inria Flowers Team, ENSTA Paris, 828 Blvd Marechaux, F-91762 Palaiseau, France
关键词
Reinforcement Learning; Explainable artificial intelligence; Machine Learning; Deep Learning; Responsible artificial intelligence; Representation learning;
D O I
10.1016/j.knosys.2020.106685
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
A large set of the explainable Artificial Intelligence (XAI) literature is emerging on feature relevance techniques to explain a deep neural network (DNN) output or explaining models that ingest image source data. However, assessing how XAI techniques can help understand models beyond classification tasks, e.g. for reinforcement learning (RL), has not been extensively studied. We review recent works in the direction to attain Explainable Reinforcement Learning (XRL), a relatively new subfield of Explainable Artificial Intelligence, intended to be used in general public applications, with diverse audiences, requiring ethical, responsible and trustable algorithms. In critical situations where it is essential to justify and explain the agent's behaviour, better explainability and interpretability of RL models could help gain scientific insight on the inner workings of what is still considered a black box. We evaluate mainly studies directly linking explainability to RL, and split these into two categories according to the way the explanations are generated: transparent algorithms and post-hoc explainability. We also review the most prominent XAI works from the lenses of how they could potentially enlighten the further deployment of the latest advances in RL, in the demanding present and future of everyday problems. (C) 2020 Elsevier B.V. All rights reserved.
引用
下载
收藏
页数:14
相关论文
共 50 条
  • [41] Deep Reinforcement Learning that Matters
    Henderson, Peter
    Islam, Riashat
    Bachman, Philip
    Pineau, Joelle
    Precup, Doina
    Meger, David
    THIRTY-SECOND AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE / THIRTIETH INNOVATIVE APPLICATIONS OF ARTIFICIAL INTELLIGENCE CONFERENCE / EIGHTH AAAI SYMPOSIUM ON EDUCATIONAL ADVANCES IN ARTIFICIAL INTELLIGENCE, 2018, : 3207 - 3214
  • [42] Coevolutionary Deep Reinforcement Learning
    Cotton, David
    Traish, Jason
    Chaczko, Zenon
    2020 IEEE SYMPOSIUM SERIES ON COMPUTATIONAL INTELLIGENCE (SSCI), 2020, : 2600 - 2607
  • [43] Applying and Verifying an Explainability Method Based on Policy Graphs in the Context of Reinforcement Learning
    Climent, Antoni
    Gnatyshak, Dmitry
    Alvarez-Napagao, Sergio
    ARTIFICIAL INTELLIGENCE RESEARCH AND DEVELOPMENT, 2021, 339 : 455 - 464
  • [44] Deep Reinforcement Learning: A Survey
    Wang, Xu
    Wang, Sen
    Liang, Xingxing
    Zhao, Dawei
    Huang, Jincai
    Xu, Xin
    Dai, Bin
    Miao, Qiguang
    IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, 2024, 35 (04) : 5064 - 5078
  • [45] An Introduction to Deep Reinforcement Learning
    Francois-Lavet, Vincent
    Henderson, Peter
    Islam, Riashat
    Bellemare, Marc G.
    Pineau, Joelle
    FOUNDATIONS AND TRENDS IN MACHINE LEARNING, 2018, 11 (3-4): : 219 - 354
  • [46] Bayesian Deep Reinforcement Learning via Deep Kernel Learning
    Junyu Xuan
    Jie Lu
    Zheng Yan
    Guangquan Zhang
    International Journal of Computational Intelligence Systems, 2018, 12 : 164 - 171
  • [47] Bayesian Deep Reinforcement Learning via Deep Kernel Learning
    Xuan, Junyu
    Lu, Jie
    Yan, Zheng
    Zhang, Guangquan
    INTERNATIONAL JOURNAL OF COMPUTATIONAL INTELLIGENCE SYSTEMS, 2019, 12 (01) : 164 - 171
  • [48] Deep Reinforcement Learning for Adaptive Learning Systems
    Li, Xiao
    Xu, Hanchen
    Zhang, Jinming
    Chang, Hua-hua
    JOURNAL OF EDUCATIONAL AND BEHAVIORAL STATISTICS, 2023, 48 (02) : 220 - 243
  • [49] Learning to Walk via Deep Reinforcement Learning
    Haarnoja, Tuomas
    Ha, Sehoon
    Zhou, Aurick
    Tan, Jie
    Tucker, George
    Levine, Sergey
    ROBOTICS: SCIENCE AND SYSTEMS XV, 2019,
  • [50] Learning to Break Rocks With Deep Reinforcement Learning
    Samtani, Pavan
    Leiva, Francisco
    Ruiz-del-Solar, Javier
    IEEE ROBOTICS AND AUTOMATION LETTERS, 2023, 8 (02) : 1077 - 1084