The hierarchy of circuit diameters and transportation polytopes

被引:8
|
作者
Borgwardt, S. [1 ]
de Loera, J. A. [2 ]
Finhold, E. [3 ]
Miller, J. [2 ]
机构
[1] Tech Univ Munich, Fak Math, Munich, Germany
[2] Univ Calif Davis, Dept Math, Davis, CA 95616 USA
[3] Univ Calif Davis, Grad Sch Management, Davis, CA 95616 USA
关键词
Transportation polytopes; Graph diameter; Circuit diameter; Hirsch conjecture; HIRSCH CONJECTURE;
D O I
10.1016/j.dam.2015.10.017
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The study of the diameter of the graph of polyhedra is a classical problem in the theory of linear programming. While transportation polytopes are at the core of operations research and statistics it is still unknown whether the Hirsch conjecture is true for general m x n-transportation polytopes. In earlier work the first three authors introduced a hierarchy of variations to the notion of graph diameter in polyhedra. This hierarchy provides some interesting lower bounds for the usual graph diameter. This paper has three contributions: First, we compare the hierarchy of diameters for the m x n-transportation polytopes. We show that the Hirsch conjecture bound of m + n - 1 is actually valid in most of these diameter notions. Second, we prove that for 3 x n transportation polytopes the Hirsch conjecture holds in the classical graph diameter. Third, we show for 2 x n-transportation polytopes that the stronger monotone Hirsch conjecture holds and improve earlier bounds on the graph diameter. (C) 2015 Elsevier B.V. All rights reserved.
引用
收藏
页码:8 / 24
页数:17
相关论文
共 50 条
  • [41] Neural circuit mechanism of depression and social hierarchy
    Wang, F.
    Zhu, J.
    Zhu, H.
    Zhang, Q.
    Lin, Z.
    Hu, H.
    JOURNAL OF NEUROCHEMISTRY, 2012, 123 : 9 - 10
  • [42] A Neural Circuit Covarying with Social Hierarchy in Macaques
    Noonan, MaryAnn P.
    Sallet, Jerome
    Mars, Rogier B.
    Neubert, Franz X.
    O'Reilly, Jill X.
    Andersson, Jesper L.
    Mitchell, Anna S.
    Bell, Andrew H.
    Miller, Karla L.
    Rushworth, Matthew F. S.
    PLOS BIOLOGY, 2014, 12 (09):
  • [43] On globally diffeomorphic polynomial maps via Newton polytopes and circuit numbers
    Bajbar, Tomas
    Stein, Oliver
    MATHEMATISCHE ZEITSCHRIFT, 2018, 288 (3-4) : 915 - 933
  • [44] Integrated modeling of urban hierarchy and transportation network planning
    Bigotte, Joao F.
    Krass, Dmitry
    Antunes, Antonio P.
    Berman, Oded
    TRANSPORTATION RESEARCH PART A-POLICY AND PRACTICE, 2010, 44 (07) : 506 - 522
  • [45] On globally diffeomorphic polynomial maps via Newton polytopes and circuit numbers
    Tomáš Bajbar
    Oliver Stein
    Mathematische Zeitschrift, 2018, 288 : 915 - 933
  • [46] Asymptotic Estimates for the Number of Contingency Tables, Integer Flows, and Volumes of Transportation Polytopes
    Barvinok, Alexander
    INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 2009, 2009 (02) : 348 - 385
  • [47] Cortical Hierarchy Governs Rat Claustrocortical Circuit Organization
    White, Michael G.
    Cody, Patrick A.
    Bubser, Michael
    Wang, Hui-Dong
    Deutch, Ariel Y.
    Mathur, Brian N.
    JOURNAL OF COMPARATIVE NEUROLOGY, 2017, 525 (06) : 1347 - 1362
  • [48] ON CIRCUIT-SIZE COMPLEXITY AND THE LOW HIERARCHY IN NP
    KO, KI
    SCHONING, U
    SIAM JOURNAL ON COMPUTING, 1985, 14 (01) : 41 - 51
  • [49] The Neural Circuit Architecture of Social Hierarchy in Rodents and Primates
    Ferreira-Fernandes, Emanuel
    Peca, Joao
    FRONTIERS IN CELLULAR NEUROSCIENCE, 2022, 16
  • [50] Transportation and development in central Florida: The rise of Orlando in the transport hierarchy
    Ivy, R
    Falasz, M
    Palimino, P
    GROWTH, TECHNOLOGY, PLANNING, AND GEOGRAPHIC EDUCATION IN CENTRAL FLORIDA: IMAGES AND ENCOUNTERS, 1997, (16): : 50 - 58