Wahl's conjecture for a minuscule G/P

被引:4
|
作者
Brown, J. [1 ]
Lakshmibai, V. [1 ]
机构
[1] Northeastern Univ, Dept Math, Boston, MA 02115 USA
关键词
Wahl's conjecture; Frobenius splitting; Gaussian; minuscule; Grassmannians; exceptional groups; SCHUBERT VARIETIES; GRASSMANNIANS;
D O I
10.1007/s12044-009-0054-8
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We show that Wahl's conjecture holds in all characteristics for a minuscule G/P.
引用
收藏
页码:571 / 592
页数:22
相关论文
共 50 条
  • [31] A note on Oliver's p-group conjecture
    Xu, Xingzhong
    JOURNAL OF ALGEBRA, 2018, 507 : 421 - 427
  • [32] HAYMAN'S CONJECTURE IN A p-ADIC FIELD
    Ojeda, Jacqueline
    TAIWANESE JOURNAL OF MATHEMATICS, 2008, 12 (09): : 2295 - 2313
  • [33] On Oliver’s p-group conjecture: II
    David J. Green
    László Héthelyi
    Nadia Mazza
    Mathematische Annalen, 2010, 347 : 111 - 122
  • [34] Grothendieck's p-curvature conjecture for rigids
    RIGID LOCAL SYSTEMS, 1996, (139): : 197 - 217
  • [35] A remark on Pólya’s conjecture at low frequencies
    Pedro Freitas
    Archiv der Mathematik, 2019, 112 : 305 - 311
  • [36] Lang's conjecture in characteristic p: An explicit bound
    Buium, A
    Voloch, JF
    COMPOSITIO MATHEMATICA, 1996, 103 (01) : 1 - 6
  • [37] On Oliver's p-group conjecture: II
    Green, David J.
    Hethelyi, Laszlo
    Mazza, Nadia
    MATHEMATISCHE ANNALEN, 2010, 347 (01) : 111 - 122
  • [38] THE NONEXISTENCE OF NEGATIVE WEIGHT DERIVATIONS ON POSITIVE DIMENSIONAL ISOLATED SINGULARITIES: GENERALIZED WAHL CONJECTURE
    Chen, Bingyi
    Chen, Hao
    Yau, Stephen S-T
    Zuo, Huaiqing
    JOURNAL OF DIFFERENTIAL GEOMETRY, 2020, 115 (02) : 195 - 224
  • [39] Jean Wahl’s unassailable heritage
    Guillaume St-Laurent
    Continental Philosophy Review, 2020, 53 : 103 - 111
  • [40] Jean Wahl's unassailable heritage
    St-Laurent, Guillaume
    CONTINENTAL PHILOSOPHY REVIEW, 2020, 53 (01) : 103 - 111