Induction motor parameter estimation using metaheuristic methods

被引:22
|
作者
Canakoglu, All Ihsan [1 ]
Yetgin, Asim Gokhan [1 ]
Temurtas, Hasan [2 ]
Turan, Mustafa [3 ]
机构
[1] Dumlupinar Univ, Fac Engn, Dept Elect & Elect Engn, Kutahya, Turkey
[2] Dumlupinar Univ, Fac Engn, Dept Comp Engn, Kutahya, Turkey
[3] Sakarya Univ, Fac Engn, Dept Elect & Elect Engn, Sakarya, Turkey
关键词
Induction motor; exact equivalent circuit parameters; torque values; charged system search; differential evolution algorithm; particle swarm optimization; genetic algorithm; CHARGED SYSTEM SEARCH; PARTICLE SWARM OPTIMIZATION; IDENTIFICATION; ALGORITHMS; MACHINES; DESIGN; STATOR;
D O I
10.3906/elk-1211-171
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
The steady-state equivalent circuit parameters of an induction motor can be estimated using the operation characteristics that are provided by manufacturers. The characteristics of the motor used in estimation methods are the starting, maximum, and nominal torque values; the power factor; and efficiency. The operation characteristics of a motor given in data sheets are generally based on design parameters and are not suitable with real values. For this reason, in this paper, the data used in the parameter estimation for induction motors are taken from the literature. Using an optimization method for parameter estimation is useful for comparing the manufacturer values and values at the end of estimation, as well as minimizing the error in between. There are many methods in the literature for the parameter estimation of induction motors. In this study, the estimation is made using the charged system search (CSS), differential evolution algorithm (DEA), particle swarm optimization, and genetic algorithm optimization techniques. The CSS algorithm is first applied for estimation of the parameters of an induction motor. The results obtained from all of the methods show that the CSS algorithm is suitable with the DEA. From the obtained results, it is understood that an exact approach can be made to equivalent circuit parameters in case the values given by the manufacturer model the motor properly.
引用
收藏
页码:1177 / 1192
页数:16
相关论文
共 50 条
  • [21] On the choice of prior for induction motor parameters estimation using MCMC methods
    Vieira, M
    Theys, C
    Alengrin, G
    NINTH IEEE SIGNAL PROCESSING WORKSHOP ON STATISTICAL SIGNAL AND ARRAY PROCESSING, PROCEEDINGS, 1998, : 192 - 195
  • [22] Multitime scale approach to induction motor parameter estimation
    Onea, A
    Horga, V
    Botan, C
    Albu, M
    SCS 2003: INTERNATIONAL SYMPOSIUM ON SIGNALS, CIRCUITS AND SYSTEMS, VOLS 1 AND 2, PROCEEDINGS, 2003, : 333 - 336
  • [23] Parameter estimation of a linear induction motor with PWM inverter
    Kang, G
    Kim, J
    Nam, K
    IECON'01: 27TH ANNUAL CONFERENCE OF THE IEEE INDUSTRIAL ELECTRONICS SOCIETY, VOLS 1-3, 2001, : 1321 - 1326
  • [24] Adaptive control with parameter estimation for induction motor drives
    Bellini, A., 1600, Pergamon Press Ltd, Oxford, United Kingdom (03):
  • [25] Artificial immune system for parameter estimation of induction motor
    Sakthivel, V. P.
    Bhuvaneswari, R.
    Subramanian, S.
    EXPERT SYSTEMS WITH APPLICATIONS, 2010, 37 (08) : 6109 - 6115
  • [26] Parameter estimation for a deep-bar induction motor
    Khang, H. V.
    Arkkio, A.
    IET ELECTRIC POWER APPLICATIONS, 2012, 6 (02) : 133 - 142
  • [27] A review of RFO induction motor parameter estimation techniques
    Toliyat, HA
    Levi, E
    Raina, M
    IEEE TRANSACTIONS ON ENERGY CONVERSION, 2003, 18 (02) : 271 - 283
  • [28] Automatic procedure for induction motor parameter estimation at standstill
    Peretti, L.
    Zigliotto, M.
    IET ELECTRIC POWER APPLICATIONS, 2012, 6 (04) : 214 - 224
  • [29] Parameter estimation of PEM fuel cells using metaheuristic algorithms
    Li, Xuebin
    Jin, Zhao
    Yu, Daiwei
    Zhang, Jun
    Zhang, Wenjin
    MEASUREMENT, 2024, 237
  • [30] Using metaheuristic algorithms for parameter estimation in generalized Mallows models
    Aledo, Juan A.
    Gamez, Jose A.
    Molina, David
    APPLIED SOFT COMPUTING, 2016, 38 : 308 - 320