An Approximation to Deep Learning Touristic-Related Time Series Forecasting

被引:0
|
作者
Trujillo Viedma, Daniel [1 ]
Rivera Rivas, Antonio Jesus [1 ]
Charte Ojeda, Francisco [1 ]
del Jesus Diaz, Maria Jose [1 ]
机构
[1] Univ Jaen, Dept Comp Sci, Andalusian Res Inst Data Sci & Computat Intellige, Jaen 23071, Spain
关键词
LSTM; ARIMA; Time series forecasting;
D O I
10.1007/978-3-030-03493-1_47
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Tourism is one of the biggest economic activities around the world. This means that an adequate planning of existing resources becomes crucial. Precise demand-related forecasting greatly improves this planning. Deep Learning models are showing an greatly improvement on time-series forecasting, particularly the LSTM, which is designed for this kind of tasks. This article introduces the touristic time-series forecasting using LSTM, and compares its accuracy against well known models RandomForest and ARIMA. Our results shows that new LSTM models achieve the best accuracy.
引用
收藏
页码:448 / 456
页数:9
相关论文
共 50 条
  • [1] Deep Learning for Time Series Forecasting: A Survey
    Torres, Jose F.
    Hadjout, Dalil
    Sebaa, Abderrazak
    Martinez-Alvarez, Francisco
    Troncoso, Alicia
    [J]. BIG DATA, 2021, 9 (01) : 3 - 21
  • [2] Time Series Representation Learning: A Survey on Deep Learning Techniques for Time Series Forecasting
    Schmieg, Tobias
    Lanquillon, Carsten
    [J]. ARTIFICIAL INTELLIGENCE IN HCI, PT I, AI-HCI 2024, 2024, 14734 : 422 - 435
  • [3] Time Series Dataset Survey for Forecasting with Deep Learning
    Hahn, Yannik
    Langer, Tristan
    Meyes, Richard
    Meisen, Tobias
    [J]. FORECASTING, 2023, 5 (01): : 315 - 335
  • [4] A novel time series forecasting model with deep learning
    Shen, Zhipeng
    Zhang, Yuanming
    Lu, Jiawei
    Xu, Jun
    Xiao, Gang
    [J]. NEUROCOMPUTING, 2020, 396 : 302 - 313
  • [5] Efficient Automated Deep Learning for Time Series Forecasting
    Deng, Difan
    Karl, Florian
    Hutter, Frank
    Bischl, Bernd
    Lindauer, Marius
    [J]. MACHINE LEARNING AND KNOWLEDGE DISCOVERY IN DATABASES, ECML PKDD 2022, PT III, 2023, 13715 : 664 - 680
  • [6] Time-series forecasting with deep learning: a survey
    Lim, Bryan
    Zohren, Stefan
    [J]. PHILOSOPHICAL TRANSACTIONS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2021, 379 (2194):
  • [7] Deep Learning Models for Time Series Forecasting: A Review
    Li, Wenxiang
    Law, K. L. Eddie
    [J]. IEEE ACCESS, 2024, 12 : 92306 - 92327
  • [8] Ensemble Deep Learning for Regression and Time Series Forecasting
    Qiu, Xueheng
    Zhang, Le
    Ren, Ye
    Suganthan, P. N.
    Amaratunga, Gehan
    [J]. 2014 IEEE SYMPOSIUM ON COMPUTATIONAL INTELLIGENCE IN ENSEMBLE LEARNING (CIEL), 2014, : 21 - 26
  • [9] Multivariate Financial Time Series Forecasting with Deep Learning
    Martelo, Sebastian
    Leon, Diego
    Hernandez, German
    [J]. APPLIED COMPUTER SCIENCES IN ENGINEERING, WEA 2022, 2022, 1685 : 160 - 169
  • [10] Wind Power Forecasting with Deep Learning Networks: Time-Series Forecasting
    Lin, Wen-Hui
    Wang, Ping
    Chao, Kuo-Ming
    Lin, Hsiao-Chung
    Yang, Zong-Yu
    Lai, Yu-Huang
    [J]. APPLIED SCIENCES-BASEL, 2021, 11 (21):