Using fuzzy labels as background knowledge for linguistic summarization of databases

被引:0
|
作者
Raschia, G [1 ]
Mouaddib, N [1 ]
机构
[1] Inst Rech Informat Nantes, F-44322 Nantes 3, France
关键词
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
In this paper, some important features of a new approach to data summarization are introduced Our model named SAINTETIQ produces summaries of groups of database records with different granularities. A summary is represented on each attribute by fuzzy sets associated to linguistic descriptors. One major feature of the SAINTETIQ System is the intensive use of Background Knowledge (BK) in the summarization process. BK is built a priori on each attribute. It supports both a translation step of descriptions of database tuples into a user-defined vocabulary, and a generalization step providing synthetic intents of summaries. Furthermore, the fuzzy set-based representation of summaries allows the system to improve robustness and accuracy of summary descriptions.
引用
收藏
页码:1372 / 1375
页数:4
相关论文
共 50 条
  • [21] Linguistic summarization of time series using fuzzy logic with linguistic quantifiers: A truth and specificity based approach
    Kacprzyk, Janusz
    Wilbik, Anna
    [J]. ARTIFICIAL INTELLIGENCE AND SOFT COMPUTING - ICAISC 2008, PROCEEDINGS, 2008, 5097 : 241 - 252
  • [22] EEG-Based Emotion Recognition in Neuromarketing Using Fuzzy Linguistic Summarization
    Kaya, Umran
    Akay, Diyar
    Ayan, Sevgi Sengul
    [J]. IEEE TRANSACTIONS ON FUZZY SYSTEMS, 2024, 32 (08) : 4248 - 4259
  • [23] Linguistic summarization of video for fall detection using voxel person and fuzzy logic
    Anderson, Derek
    Luke, Robert H.
    Keller, James M.
    Skubic, Marjorie
    Rantz, Marilyn
    Aud, Myra
    [J]. COMPUTER VISION AND IMAGE UNDERSTANDING, 2009, 113 (01) : 80 - 89
  • [24] Interval type-2 fuzzy linguistic summarization using restriction levels
    Aydogan, Sena
    [J]. NEURAL COMPUTING & APPLICATIONS, 2023, 35 (35): : 24947 - 24957
  • [25] Interval type-2 fuzzy linguistic summarization using restriction levels
    Sena Aydogan
    [J]. Neural Computing and Applications, 2023, 35 : 24947 - 24957
  • [26] Data summarization in relational databases through fuzzy dependencies
    Cubero, JC
    Medina, JM
    Pons, O
    Vila, MA
    [J]. INFORMATION SCIENCES, 1999, 121 (3-4) : 233 - 270
  • [27] An Extension of Fuzzy Linguistic Summarization Considering Probabilistic Uncertainty
    Aydogan, Sena
    Akay, Diyar
    Boran, Fatih Emre
    Yager, Ronald R.
    [J]. INTERNATIONAL JOURNAL OF UNCERTAINTY FUZZINESS AND KNOWLEDGE-BASED SYSTEMS, 2018, 26 (02) : 195 - 215
  • [28] A fuzzy linguistic summarization technique for TV recommender systems
    Pigeau, A
    Raschia, G
    Gelgon, M
    Mouaddib, N
    Saint-Paul, R
    [J]. PROCEEDINGS OF THE 12TH IEEE INTERNATIONAL CONFERENCE ON FUZZY SYSTEMS, VOLS 1 AND 2, 2003, : 743 - 748
  • [29] Toward Fuzzy Temporal Databases with Temporal Fuzzy Linguistic Terms
    Soysangwarn, Sureeporn
    Chittayasothorn, Suphamit
    [J]. 2009 SECOND INTERNATIONAL CONFERENCE ON THE APPLICATIONS OF DIGITAL INFORMATION AND WEB TECHNOLOGIES (ICADIWT 2009), 2009, : 8 - 13
  • [30] Linguistic Summarization Using IF-THEN Rules and Interval Type-2 Fuzzy Sets
    Wu, Dongrui
    Mendel, Jerry M.
    [J]. IEEE TRANSACTIONS ON FUZZY SYSTEMS, 2011, 19 (01) : 136 - 151