Hardware Performance of Complex Dot-Product Implementations

被引:0
|
作者
DeBrunner, Linda S. [1 ]
DeBrunner, Victor [1 ]
机构
[1] Florida State Univ, Dept Elect & Comp Engn, Tallahassee, FL 32306 USA
关键词
D O I
10.1109/IEEECONF56349.2022.10051852
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Dot-product computations are at the heart of most signal processing algorithms. Often, the distinction between computing the dot-products of complex numbers and the dot-products of real numbers is not considered to be significant. We will compare the computation of a real valued dot-product to the computation of a complex valued dot-product with respect to space, time, and accuracy using Verilog/VHDL simulation tools. From these implementations, we draw conclusions with respect to the hardware implementation of the DFT and similar DSP algorithms. Based on our investigations, these ideas indicate that a complex DFT will require about 3.9 times the area of a natively real valued DFT.
引用
收藏
页码:141 / 144
页数:4
相关论文
共 50 条
  • [41] In-memory photonic dot-product engine with electrically programmable weight banks
    Wen Zhou
    Bowei Dong
    Nikolaos Farmakidis
    Xuan Li
    Nathan Youngblood
    Kairan Huang
    Yuhan He
    C. David Wright
    Wolfram H. P. Pernice
    Harish Bhaskaran
    [J]. Nature Communications, 14
  • [42] A Correctly-Rounded Fixed-Point-Arithmetic Dot-Product Algorithm
    Boldo, Sylvie
    Gallois-Wong, Diane
    Hilaire, Thibault
    [J]. 2020 IEEE 27TH SYMPOSIUM ON COMPUTER ARITHMETIC (ARITH), 2020, : 9 - 16
  • [43] Impression Prediction of Oral Presentation Using LSTM and Dot-product Attention Mechanism
    Yi, Shengzhou
    Wang, Xueting
    Yamasaki, Toshihiko
    [J]. 2019 IEEE FIFTH INTERNATIONAL CONFERENCE ON MULTIMEDIA BIG DATA (BIGMM 2019), 2019, : 242 - 246
  • [44] DP-MAP: Towards Resistive Dot-Product Engines with Improved Precision
    Uysal, Necati
    Zhang, Baogang
    Jha, Sumit Kumar
    Ewetz, Rickard
    [J]. 2020 IEEE/ACM INTERNATIONAL CONFERENCE ON COMPUTER AIDED-DESIGN (ICCAD), 2020,
  • [45] In-memory photonic dot-product engine with electrically programmable weight banks
    Zhou, Wen
    Dong, Bowei
    Farmakidis, Nikolaos
    Li, Xuan
    Youngblood, Nathan
    Huang, Kairan
    He, Yuhan
    David Wright, C.
    Pernice, Wolfram H. P.
    Bhaskaran, Harish
    [J]. NATURE COMMUNICATIONS, 2023, 14 (01)
  • [46] PDPU: An Open-Source Posit Dot-Product Unit for Deep Learning Applications
    Li, Qiong
    Fang, Chao
    Wang, Zhongfeng
    [J]. 2023 IEEE INTERNATIONAL SYMPOSIUM ON CIRCUITS AND SYSTEMS, ISCAS, 2023,
  • [47] A Hardware Accelerator for Computing an Exact Dot Product
    Koenig, Jack
    Biancolin, David
    Bachrach, Jonathan
    Asanovic, Krste
    [J]. 2017 IEEE 24TH SYMPOSIUM ON COMPUTER ARITHMETIC (ARITH), 2017, : 114 - 121
  • [48] Spoken Term Detection and Relevance Score Estimation using Dot-Product of Pronunciation Embeddings
    Svec, Jan
    Smidl, Lubos
    Psutka, Josef, V
    Prazak, Ales
    [J]. INTERSPEECH 2021, 2021, : 4398 - 4402
  • [49] DEEP ATTENTION-DRIVEN HSI SCENE CLASSIFICATION BASED ON INVERTED DOT-PRODUCT
    Paoletti, M. E.
    Tao, X.
    Han, L.
    Wu, Z.
    Moreno-Alvarez, S.
    Haut, J. M.
    [J]. 2022 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS 2022), 2022, : 1380 - 1383
  • [50] Dot-Product Join: Scalable In-Database Linear Algebra for Big Model Analytics
    Qin, Chengjie
    Rusu, Florin
    [J]. SSDBM 2017: 29TH INTERNATIONAL CONFERENCE ON SCIENTIFIC AND STATISTICAL DATABASE MANAGEMENT, 2017,