Constructing metabolic association networks using high-dimensional mass spectrometry data

被引:0
|
作者
Koo, Imhoi [1 ]
Wei, Xiaoli [1 ]
Shi, Xue [1 ]
Zhou, Zhanxiang [2 ]
Kim, Seongho [3 ]
Zhang, Xiang [1 ]
机构
[1] Univ Louisville, Dept Chem, Ctr Regulatory & Environm Analyt Metabol, Louisville, KY 40292 USA
[2] Univ N Carolina, Dept Nutr, Greensboro, NC 27412 USA
[3] Wayne State Univ, Sch Med, Dept Oncol, Biostat Core,Karmanos Canc Inst, Detroit, MI 48201 USA
基金
美国国家科学基金会;
关键词
Metabolomics; Gaussian graphical model; Partial correlation; Independent component regression; Principal component regression; Partial least squares regression; Extrinsic similarity; PARTIAL LEAST-SQUARES; INDEPENDENT COMPONENT ANALYSIS; REDUCTION;
D O I
10.1016/j.chemolab.2014.07.002
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
The goal of metabolic association networks is to identify topology of a metabolic network for a better understanding of molecular mechanisms. An accurate metabolic association network enables investigation of the functional behavior of metabolites in a cell or tissue. Gaussian Graphical model (GGM)-based methods have been widely used in genomics to infer biological networks. However, the performance of various GGM-based methods for the construction of metabolic association networks remains unknown in metabolomics. The performance of principal component regression (PCR), independent component regression (ICR), shrinkage covariance estimate (SCE), partial least squares regression (PLSR), and extrinsic similarity (ES) methods in constructing metabolic association networks was compared by estimating partial correlation coefficient matrices when the number of variables is larger than the sample size. To do this, the sample size and the network density (complexity) were considered as variables for network construction. Simulation studies show that PCR and ICR are more stable to the sample size and the network density than SCE and PLSR in terms of F1 scores. These methods were further applied to the analysis of experimental metabolomics data acquired from metabolite extract of mouse liver. For the simulated data, the proposed methods PCR and ICR outperform other methods when the network density is large, while PLSR and SCE perform better when the network density is small. As for the experimental metabolomics data, PCR and ICR discover more significant edges and perform better than PLSR and SCE when the discovered edges are evaluated using KEGG pathway. These results suggest that the metabolic network might be more complex and therefore, PCR and ICR have the advantage over PLSR and SCE in constructing the metabolic association networks. (C) 2014 Elsevier B.V. All rights reserved.
引用
收藏
页码:193 / 202
页数:10
相关论文
共 50 条
  • [41] Clustering high-dimensional data using growing SOM
    Zhou, JL
    Fu, Y
    ADVANCES IN NEURAL NETWORKS - ISNN 2005, PT 2, PROCEEDINGS, 2005, 3497 : 63 - 68
  • [42] Analyzing high-dimensional cytometry data using FlowSOM
    Katrien Quintelier
    Artuur Couckuyt
    Annelies Emmaneel
    Joachim Aerts
    Yvan Saeys
    Sofie Van Gassen
    Nature Protocols, 2021, 16 : 3775 - 3801
  • [43] PSI: Constructing ad-hoc simplices to interpolate high-dimensional unstructured data
    Lueders, Stefan
    Dolag, Klaus
    JOURNAL OF COMPUTATIONAL PHYSICS, 2022, 467
  • [44] On Criticality in High-Dimensional Data
    Saremi, Saeed
    Sejnowski, Terrence J.
    NEURAL COMPUTATION, 2014, 26 (07) : 1329 - 1339
  • [45] High-Dimensional Data Bootstrap
    Chernozhukov, Victor
    Chetverikov, Denis
    Kato, Kengo
    Koike, Yuta
    ANNUAL REVIEW OF STATISTICS AND ITS APPLICATION, 2023, 10 : 427 - 449
  • [46] High-dimensional data clustering
    Bouveyron, C.
    Girard, S.
    Schmid, C.
    COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2007, 52 (01) : 502 - 519
  • [48] High-dimensional data visualization
    Tang, Lin
    NATURE METHODS, 2020, 17 (02) : 129 - 129
  • [49] High-dimensional data visualization
    Lin Tang
    Nature Methods, 2020, 17 : 129 - 129
  • [50] High-dimensional Data Cubes
    John, Sachin Basil
    Koch, Christoph
    PROCEEDINGS OF THE VLDB ENDOWMENT, 2022, 15 (13): : 3828 - 3840