The anchoring mechanism of a bluff-body stabilized laminar premixed flame

被引:100
|
作者
Kedia, Kushal S. [1 ]
Ghoniem, Ahmed F. [1 ]
机构
[1] MIT, Dept Mech Engn, Cambridge, MA 02139 USA
关键词
Premixed flame anchoring; Bluff-body; Flame structure; Conjugate heat exchange; Preferential diffusion; Laminar; CONDUCTING PERFORATED PLATE; PREFERENTIAL TRANSPORT; NUMERICAL-SIMULATION; WALL INTERACTION; CH4/AIR FLAMES; DYNAMICS; BLOWOFF; IMPACT; MODEL;
D O I
10.1016/j.combustflame.2014.02.005
中图分类号
O414.1 [热力学];
学科分类号
摘要
The objective of this work is to investigate the mechanism of the laminar premixed flame anchoring near a heat-conducting bluff-body. We use unsteady, fully resolved, two-dimensional simulations with detailed chemical kinetics and species transport for methane air combustion. No artificial flame anchoring boundary conditions were imposed. Simulations show a shear-layer stabilized flame just downstream of the bluff-body, with a recirculation zone formed by the products of combustion. A steel bluff-body resulted in a slightly larger recirculation zone than a ceramic bluff-body; the size of which grew as the equivalence ratio was decreased. A significant departure from the conventional two-zone flame-structure is shown in the anchoring region. In this region, the reaction zone is associated with a large negative energy convection (directed from products to reactants) resulting in a negative flame-displacement speed. It is shown that the premixed flame anchors at an immediate downstream location near the bluff-body where favorable ignition conditions are established; a region associated with (1) a sufficiently high temperature impacted by the conjugate heat exchange between the heat-conducting bluff-body and the hot reacting flow and (2) a locally maximum stoichiometry characterized by the preferential diffusion effects. (C) 2014 The Combustion Institute. Published by Elsevier Inc. All rights reserved.
引用
下载
收藏
页码:2327 / 2339
页数:13
相关论文
共 50 条
  • [31] The coupling of turbulence and chemistry in a premixed bluff-body flame as studied by LES
    Giacomazzi, E
    Battaglia, V
    Bruno, C
    COMBUSTION AND FLAME, 2004, 138 (04) : 320 - 335
  • [32] LES of longitudinal and transverse self-excited combustion instabilities in a bluff-body stabilized turbulent premixed flame
    Ghani, Abdulla
    Poinsot, Thierry
    Gicquel, Laurent
    Staffelbach, Gabriel
    COMBUSTION AND FLAME, 2015, 162 (11) : 4075 - 4083
  • [33] Experimental investigation on effects of central air jet on the bluff-body stabilized premixed methane-air flame
    Tong, Yiheng
    Li, Mao
    Thern, Marcus
    Klingmann, Jens
    Weng, Wubin
    Chen, Shuang
    Li, Zhongshan
    3RD INTERNATIONAL CONFERENCE ON ENERGY AND ENVIRONMENT RESEARCH, ICEER 2016, 2017, 107 : 23 - 32
  • [34] Experimental Study on the Interactions for Bluff-body and Swirl in Stabilized Flame Process
    Ge, Bing
    Zang, Shu-Sheng
    JOURNAL OF THERMAL SCIENCE, 2012, 21 (01) : 88 - 96
  • [35] Lattice-Boltzmann modeling of a turbulent bluff-body stabilized flame
    Tayyab, M.
    Zhao, S.
    Boivin, P.
    PHYSICS OF FLUIDS, 2021, 33 (03)
  • [36] VELOCITY-MEASUREMENTS IN A TURBULENT NONPREMIXED BLUFF-BODY STABILIZED FLAME
    SCHEFER, RW
    NAMAZIAN, M
    KELLY, J
    COMBUSTION SCIENCE AND TECHNOLOGY, 1987, 56 (4-6) : 101 - 138
  • [37] Large-eddy simulation of a bluff-body stabilized nonpremixed flame
    Kempf, A
    Lindstedt, RP
    Janicka, J
    COMBUSTION AND FLAME, 2006, 144 (1-2) : 170 - 189
  • [38] On the Influence of Fuel Distribution on the Flame Structure of Bluff-Body Stabilized Flames
    Lovett, Jeffery A.
    Ahmed, Kareem
    Bibik, Oleksandr
    Smith, Andrew G.
    Lubarsky, Eugene
    Menon, Suresh
    Zinn, Ben T.
    JOURNAL OF ENGINEERING FOR GAS TURBINES AND POWER-TRANSACTIONS OF THE ASME, 2014, 136 (04):
  • [40] ON THE INFLUENCE OF FUEL DISTRIBUTION ON THE FLAME STRUCTURE OF BLUFF-BODY STABILIZED FLAMES
    Lovett, Jeffery A.
    Ahmed, Kareem A.
    Bibik, Oleksandr
    Smith, Andrew G.
    Lubarsky, Eugene
    Menon, Suresh
    Zinn, Ben T.
    PROCEEDINGS OF THE ASME TURBO EXPO: TURBINE TECHNICAL CONFERENCE AND EXPOSITION, 2013, VOL 1B, 2013,