ON SOME EXCEPTIONAL SETS IN ENGEL EXPANSIONS AND HAUSDORFF DIMENSIONS

被引:3
|
作者
Liu, Jia [1 ]
机构
[1] Anhui Univ Finance & Econ, Inst Stat & Appl Math, Bengbu 233030, Peoples R China
基金
中国国家自然科学基金;
关键词
Engel Expansions; Exceptional Set; Hausdorff Dimension;
D O I
10.1142/S0218348X20501406
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
For any x is an element of (0, 1], let the infinite series Sigma n=1 infinity</mml:msubsup> <mml:mfrac>1 d1(x)d2(x)dn(x)</mml:mfrac> be the Engel expansion of x. Suppose psi : N -> + is a strictly increasing function with limn -> infinity psi (n) = infinity and let E(psi), Esup(psi) and Einf(psi) be defined as the sets of numbers x is an element of (0, 1] for which the limit, upper limit and lower limit of <mml:mfrac>log dn(x) psi (n)</mml:mfrac> is equal to 1. In this paper, we qualify the size of the set E(psi), Esup(psi) and <mml:msub>Einf(psi) in the sense of Hausdorff dimension and show that these three dimensions can be different.
引用
收藏
页数:9
相关论文
共 50 条