STATISTICAL INFERENCE BASED ON ROBUST LOW-RANK DATA MATRIX APPROXIMATION
被引:3
|
作者:
Feng, Xingdong
论文数: 0引用数: 0
h-index: 0
机构:
Shanghai Univ Finance & Econ, Minist Educ, Sch Stat & Management, Shanghai 200433, Peoples R China
Shanghai Univ Finance & Econ, Minist Educ, Key Lab Math Econ SUFE, Shanghai 200433, Peoples R ChinaShanghai Univ Finance & Econ, Minist Educ, Sch Stat & Management, Shanghai 200433, Peoples R China
Feng, Xingdong
[1
,2
]
He, Xuming
论文数: 0引用数: 0
h-index: 0
机构:
Univ Michigan, Dept Stat, Ann Arbor, MI 48109 USAShanghai Univ Finance & Econ, Minist Educ, Sch Stat & Management, Shanghai 200433, Peoples R China
He, Xuming
[3
]
机构:
[1] Shanghai Univ Finance & Econ, Minist Educ, Sch Stat & Management, Shanghai 200433, Peoples R China
[2] Shanghai Univ Finance & Econ, Minist Educ, Key Lab Math Econ SUFE, Shanghai 200433, Peoples R China
[3] Univ Michigan, Dept Stat, Ann Arbor, MI 48109 USA
Hypothesis testing;
M estimator;
singular value decomposition;
trimmed least squares;
LEAST-SQUARES;
REGRESSION;
D O I:
10.1214/13-AOS1186
中图分类号:
O21 [概率论与数理统计];
C8 [统计学];
学科分类号:
020208 ;
070103 ;
0714 ;
摘要:
The singular value decomposition is widely used to approximate data matrices with lower rank matrices. Feng and He [Ann. Appl. Stat. 3 (2009) 1634-1654] developed tests on dimensionality of the mean structure of a data matrix based on the singular value decomposition. However, the first singular values and vectors can be driven by a small number of outlying measurements. In this paper, we consider a robust alternative that moderates the effect of outliers in low-rank approximations. Under the assumption of random row effects, we provide the asymptotic representations of the robust low-rank approximation. These representations may be used in testing the adequacy of a low-rank approximation. We use oligonucleotide gene microarray data to demonstrate how robust singular value decomposition compares with the its traditional counterparts. Examples show that the robust methods often lead to a more meaningful assessment of the dimensionality of gene intensity data matrices.
机构:
Zhejiang Univ, Dept Math, Hangzhou 310027, Peoples R China
Zhejiang Univ, State Key Lab CAD&CG, Hangzhou 310027, Peoples R ChinaZhejiang Univ, Dept Math, Hangzhou 310027, Peoples R China
Zhang, Zhenyue
Zhao, Keke
论文数: 0引用数: 0
h-index: 0
机构:
Zhejiang Univ, Dept Math, Hangzhou 310027, Peoples R ChinaZhejiang Univ, Dept Math, Hangzhou 310027, Peoples R China
机构:
Chinese Univ Hong Kong, Dept Elect Engn, Shatin, Hong Kong, Peoples R ChinaChinese Univ Hong Kong, Dept Elect Engn, Shatin, Hong Kong, Peoples R China
Li, Xiao
Zhu, Zhihui
论文数: 0引用数: 0
h-index: 0
机构:
Univ Denver, Dept Elect & Comp Engn, Denver, CO 80208 USAChinese Univ Hong Kong, Dept Elect Engn, Shatin, Hong Kong, Peoples R China
Zhu, Zhihui
So, Anthony Man-Cho
论文数: 0引用数: 0
h-index: 0
机构:
Chinese Univ Hong Kong, Dept Syst Engn & Engn Management, Shatin, Hong Kong, Peoples R ChinaChinese Univ Hong Kong, Dept Elect Engn, Shatin, Hong Kong, Peoples R China
So, Anthony Man-Cho
Vidal, Rene
论文数: 0引用数: 0
h-index: 0
机构:
Johns Hopkins Univ, Math Inst Data Sci, Baltimore, MD 21218 USAChinese Univ Hong Kong, Dept Elect Engn, Shatin, Hong Kong, Peoples R China
机构:
Univ Szeged, MTA SZTE Res Grp Artificial Intelligence, POB 652, H-6701 Szeged, HungaryUniv Szeged, MTA SZTE Res Grp Artificial Intelligence, POB 652, H-6701 Szeged, Hungary
Hegedus, Istvan
Berta, Arpad
论文数: 0引用数: 0
h-index: 0
机构:
Univ Szeged, MTA SZTE Res Grp Artificial Intelligence, POB 652, H-6701 Szeged, HungaryUniv Szeged, MTA SZTE Res Grp Artificial Intelligence, POB 652, H-6701 Szeged, Hungary
Berta, Arpad
论文数: 引用数:
h-index:
机构:
Kocsis, Levente
Benczur, Andras A.
论文数: 0引用数: 0
h-index: 0
机构:
Hungarian Acad Sci MTA SZTAKI, Inst Comp Sci & Control, Lagymanyosi U 11, H-1111 Budapest, HungaryUniv Szeged, MTA SZTE Res Grp Artificial Intelligence, POB 652, H-6701 Szeged, Hungary
Benczur, Andras A.
Jelasity, Mark
论文数: 0引用数: 0
h-index: 0
机构:
Univ Szeged, MTA SZTE Res Grp Artificial Intelligence, POB 652, H-6701 Szeged, Hungary
MTA SZTE Res Grp AI, Budapest, HungaryUniv Szeged, MTA SZTE Res Grp Artificial Intelligence, POB 652, H-6701 Szeged, Hungary