STATISTICAL INFERENCE BASED ON ROBUST LOW-RANK DATA MATRIX APPROXIMATION

被引:3
|
作者
Feng, Xingdong [1 ,2 ]
He, Xuming [3 ]
机构
[1] Shanghai Univ Finance & Econ, Minist Educ, Sch Stat & Management, Shanghai 200433, Peoples R China
[2] Shanghai Univ Finance & Econ, Minist Educ, Key Lab Math Econ SUFE, Shanghai 200433, Peoples R China
[3] Univ Michigan, Dept Stat, Ann Arbor, MI 48109 USA
来源
ANNALS OF STATISTICS | 2014年 / 42卷 / 01期
基金
美国国家科学基金会;
关键词
Hypothesis testing; M estimator; singular value decomposition; trimmed least squares; LEAST-SQUARES; REGRESSION;
D O I
10.1214/13-AOS1186
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
The singular value decomposition is widely used to approximate data matrices with lower rank matrices. Feng and He [Ann. Appl. Stat. 3 (2009) 1634-1654] developed tests on dimensionality of the mean structure of a data matrix based on the singular value decomposition. However, the first singular values and vectors can be driven by a small number of outlying measurements. In this paper, we consider a robust alternative that moderates the effect of outliers in low-rank approximations. Under the assumption of random row effects, we provide the asymptotic representations of the robust low-rank approximation. These representations may be used in testing the adequacy of a low-rank approximation. We use oligonucleotide gene microarray data to demonstrate how robust singular value decomposition compares with the its traditional counterparts. Examples show that the robust methods often lead to a more meaningful assessment of the dimensionality of gene intensity data matrices.
引用
收藏
页码:190 / 210
页数:21
相关论文
共 50 条
  • [31] LLORMA : Local Low-Rank Matrix Approximation
    Lee, Joonseok
    Kim, Seungyeon
    Lebanon, Guy
    Singer, Yoram
    Bengio, Samy
    JOURNAL OF MACHINE LEARNING RESEARCH, 2016, 17
  • [32] A Schur method for low-rank matrix approximation
    vanderVeen, AJ
    SIAM JOURNAL ON MATRIX ANALYSIS AND APPLICATIONS, 1996, 17 (01) : 139 - 160
  • [33] Low-Rank Matrix Approximation with Manifold Regularization
    Zhang, Zhenyue
    Zhao, Keke
    IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2013, 35 (07) : 1717 - 1729
  • [34] NONCONVEX ROBUST LOW-RANK MATRIX RECOVERY
    Li, Xiao
    Zhu, Zhihui
    So, Anthony Man-Cho
    Vidal, Rene
    SIAM JOURNAL ON OPTIMIZATION, 2020, 30 (01) : 660 - 686
  • [35] Robust Decentralized Low-Rank Matrix Decomposition
    Hegedus, Istvan
    Berta, Arpad
    Kocsis, Levente
    Benczur, Andras A.
    Jelasity, Mark
    ACM TRANSACTIONS ON INTELLIGENT SYSTEMS AND TECHNOLOGY, 2016, 7 (04)
  • [36] Approximation Schemes for Low-rank Binary Matrix Approximation Problems
    Fomin, Fedor, V
    Golovach, Petr A.
    Lokshtanov, Daniel
    Panolan, Fahad
    Saurabh, Saket
    ACM TRANSACTIONS ON ALGORITHMS, 2020, 16 (01)
  • [37] Matrix Completion via Successive Low-rank Matrix Approximation
    Wang, Jin
    Mo, Zeyao
    EAI ENDORSED TRANSACTIONS ON SCALABLE INFORMATION SYSTEMS, 2023, 10 (03)
  • [38] Fast Nonnegative Matrix/Tensor Factorization Based on Low-Rank Approximation
    Zhou, Guoxu
    Cichocki, Andrzej
    Xie, Shengli
    IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2012, 60 (06) : 2928 - 2940
  • [39] Matrix Completion Based on Non-Convex Low-Rank Approximation
    Nie, Feiping
    Hu, Zhanxuan
    Li, Xuelong
    IEEE TRANSACTIONS ON IMAGE PROCESSING, 2019, 28 (05) : 2378 - 2388
  • [40] A Nonnegative Projection Based Algorithm for Low-Rank Nonnegative Matrix Approximation
    Wang, Peitao
    He, Zhaoshui
    Xie, Kan
    Gao, Junbin
    Antolovich, Michael
    NEURAL INFORMATION PROCESSING, ICONIP 2017, PT I, 2017, 10634 : 240 - 247