Non-hermitian quantum mechanics in non-commutative space

被引:16
|
作者
Giri, Pulak Ranjan [1 ]
Roy, P. [2 ]
机构
[1] Saha Inst Nucl Phys, Div Theory, Kolkata 700064, W Bengal, India
[2] Indian Stat Inst, Phys & Appl Math Unit, Kolkata 700108, India
来源
EUROPEAN PHYSICAL JOURNAL C | 2009年 / 60卷 / 01期
关键词
OSCILLATOR;
D O I
10.1140/epjc/s10052-009-0866-9
中图分类号
O412 [相对论、场论]; O572.2 [粒子物理学];
学科分类号
摘要
A recent investigation of the possibility of having a PT-symmetric periodic potential in an optical lattice stimulated the urge to generalize non-hermitian quantum mechanics beyond the case of commutative space. We thus study non-hermitian quantum systems in non-commutative space as well as a PT-symmetric deformation of this space. Specifically, a PT-symmetric harmonic oscillator together with an iC(x(1) + x(2)) interaction are discussed in this space, and solutions are obtained. We show that in the PT deformed non-commutative space the Hamiltonian may or may not possess real eigenvalues, depending on the choice of the non-commutative parameters. However, it is shown that in standard non-commutative space, the iC(x(1) + x(2)) interaction generates only real eigenvalues despite the fact that the Hamiltonian is not PT-symmetric. A complex interacting anisotropic oscillator system also is discussed.
引用
收藏
页码:157 / 161
页数:5
相关论文
共 50 条
  • [31] Non-Hermitian Hamiltonian deformations in quantum mechanics
    Apollonas S. Matsoukas-Roubeas
    Federico Roccati
    Julien Cornelius
    Zhenyu Xu
    Aurélia Chenu
    Adolfo del Campo
    Journal of High Energy Physics, 2023
  • [32] Matrix Algebras in Non-Hermitian Quantum Mechanics
    Sergi, Alessandro
    COMMUNICATIONS IN THEORETICAL PHYSICS, 2011, 56 (01) : 96 - 98
  • [33] QUANTUM-MECHANICS WITH A NON-HERMITIAN HAMILTONIAN
    GRIGORENKO, AN
    PHYSICS LETTERS A, 1993, 172 (05) : 350 - 354
  • [34] Matrix Algebras in Non-Hermitian Quantum Mechanics
    Alessandro Sergi
    CommunicationsinTheoreticalPhysics, 2011, 56 (07) : 96 - 98
  • [35] Non-Hermitian Hamiltonian deformations in quantum mechanics
    Matsoukas-Roubeas, Apollonas S.
    Roccati, Federico
    Cornelius, Julien
    Xu, Zhenyu
    Chenu, Aurelia
    del Campo, Adolfo
    JOURNAL OF HIGH ENERGY PHYSICS, 2023, 2023 (01)
  • [36] Geometric phases in non-Hermitian quantum mechanics
    Cui, Xiao-Dong
    Zheng, Yujun
    PHYSICAL REVIEW A, 2012, 86 (06):
  • [37] Localization transitions in non-Hermitian quantum mechanics
    Hatano, N
    Nelson, DR
    PHYSICAL REVIEW LETTERS, 1996, 77 (03) : 570 - 573
  • [38] Vortex pinning and non-Hermitian quantum mechanics
    Hatano, N
    Nelson, DR
    PHYSICAL REVIEW B, 1997, 56 (14) : 8651 - 8673
  • [39] Localization, resonance and non-Hermitian quantum mechanics
    Hatano, N
    Watanabe, T
    Yamasaki, J
    PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2002, 314 (1-4) : 170 - 176
  • [40] Generalized Uncertainty Relation in the Non-commutative Quantum Mechanics
    Chung, Won Sang
    INTERNATIONAL JOURNAL OF THEORETICAL PHYSICS, 2016, 55 (06) : 2989 - 3000