Method for Classifying a Noisy Raman Spectrum Based on a Wavelet Transform and a Deep Neural Network

被引:8
|
作者
Pan, Liangrui [1 ]
Pipitsunthonsan, Pronthep [1 ]
Daengngam, Chalongrat [2 ]
Channumsin, Sittiporn [3 ]
Sreesawet, Suwat [3 ]
Chongcheawchamnan, Mitchai [1 ]
机构
[1] Prince Songkla Univ, Fac Engn, Hat Yai 90110, Thailand
[2] Prince Songkla Univ, Fac Sci, Hat Yai 90110, Thailand
[3] Geoinformat & Space Technol Dev Agcy GISTDA, Chon Buri 20230, Thailand
来源
IEEE ACCESS | 2020年 / 8卷 / 08期
关键词
Raman spectrum; baseline noise; wavelet transform; deep convolution neural network; accuracy; robustness; DECISION TREE; CLASSIFICATION; SPECTROSCOPY; RECOGNITION; DATABASE;
D O I
10.1109/ACCESS.2020.3035884
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Because it is relatively difficult in practice to classify the Raman spectrum under baseline noise and additive white Gaussian noise environments, this paper proposes a new framework based on a wavelet transform and deep neural network for identification of noisy Raman spectra. The framework consists of two main engines. Wavelet transform is proposed as the framework front end for transforming the 1-D noise Raman spectrum to two-dimensional data. The two-dimensional data are fed to the framework back end, which is a classifier. The optimum classifier is chosen by implementing several traditional machine learning (ML) and deep learning (DL) algorithms, and we investigate their classification accuracy and robustness performances. The four chosen MLs are naive Bayes (NB), a support vector machine (SVM), a random forest (RF) and a k-nearest neighbor (KNN), and a deep convolution neural network (DCNN) was chosen as a DL classifier. Noise-free, Gaussian noise, baseline noise, and mixed-noise Raman spectra were applied to train and validate the ML and DCNN models. The optimum back-end classifier was obtained by testing the ML and DCNN models with several noisy Raman spectra (10-30 dB noise power). Based on the simulation, the accuracy of the DCNN classifier is 9% higher than that of the NB classifier, 3.5% higher than the RF classifier, 1% higher than the KNN classifier, and 0.5% higher than the SVM classifier. In terms of robustness to mixed noise scenarios, the framework with the DCNN back end showed superior performance compared with the other ML back ends. The DCNN back end achieved 90% accuracy at 3 dB SNR, while the NB, SVM, RF, and K-NN back ends required 27 dB, 22 dB, 27 dB, and 23 dB SNR, respectively. In addition, in the low-noise test dataset, the F-measure score of the DCNN back end exceeded 99.1%, and the F-measure scores of the other ML engines were below 98.7%.
引用
收藏
页码:202716 / 202727
页数:12
相关论文
共 50 条
  • [21] Edge Testing of Noisy Image Based on Wavelet Neural Network
    Automatic Control and Computer Sciences, 2023, 57 : 61 - 69
  • [22] Edge Testing of Noisy Image Based on Wavelet Neural Network
    Zhao, Aodong
    Zhang, Nan
    AUTOMATIC CONTROL AND COMPUTER SCIENCES, 2023, 57 (01) : 61 - 69
  • [23] Islanding detection based on wavelet transform and neural network
    Xie, D. (XDY@tlu.edu.cn), 1600, Chinese Society for Electrical Engineering (34):
  • [24] Iris recognition based on wavelet transform and neural network
    Anna, Wang
    Yu, Chen
    Jie, Wu
    Zhang xin-hua
    2007 IEEE/ICME INTERNATIONAL CONFERENCE ON COMPLEX MEDICAL ENGINEERING, VOLS 1-4, 2007, : 758 - 761
  • [25] Face Recognition based on Wavelet Transform and Neural Network
    Fan, Yu
    Zhu, Wuxuan
    Bai, Guangzhou
    Li, Taibo
    PROCEEDINGS OF 2016 IEEE ADVANCED INFORMATION MANAGEMENT, COMMUNICATES, ELECTRONIC AND AUTOMATION CONTROL CONFERENCE (IMCEC 2016), 2016, : 1569 - 1572
  • [26] Seismic random noise attenuation based on stationary wavelet transform and deep residual neural network
    Wu, Guoning
    Yu, Mengmeng
    Wang, Junxian
    Liu, Guochang
    Shiyou Diqiu Wuli Kantan/Oil Geophysical Prospecting, 2022, 57 (01): : 43 - 51
  • [27] Deep demosaicking convolution neural network and quantum wavelet transform-based image denoising
    Chinnaiyan, Anitha Mary
    Alfred Sylam, Boyed Wesley
    NETWORK-COMPUTATION IN NEURAL SYSTEMS, 2024,
  • [28] Discrete wavelet transform based data representation in deep neural network for gait abnormality detection
    Chakraborty, Jayeeta
    Nandy, Anup
    BIOMEDICAL SIGNAL PROCESSING AND CONTROL, 2020, 62 (62)
  • [29] An anesthesia depth computing method study based on wavelet transform and artificial neural network
    Yuan S.
    Ye J.
    Zhang X.
    Zhou J.
    Tan X.
    Li R.
    Deng Z.
    Ding Y.
    Shengwu Yixue Gongchengxue Zazhi/Journal of Biomedical Engineering, 2021, 38 (05): : 838 - 847
  • [30] A sleep apnea detection method based on discrete wavelet transform and convolutional neural network
    Hou Xuke
    Dong Xiang
    Huang Zexia
    2024 3RD INTERNATIONAL CONFERENCE ON IMAGE PROCESSING AND MEDIA COMPUTING, ICIPMC 2024, 2024, : 313 - 316