On the reconstruction of Toeplitz matrix inverses from columns

被引:18
|
作者
Heinig, G [1 ]
机构
[1] Kuwait Univ, Dept Math & Comp Sci, Safat 13060, Kuwait
关键词
Toeplitz matrix; matrix inversion; fast algorithms;
D O I
10.1016/S0024-3795(02)00289-6
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper we discuss the problem whether and how the inverse of a Toeplitz matrix can be recovered from some of its columns or parts of columns under the requirement that only 2n - 1 parameters are involved. The results generalize and strengthen earlier findings by Trench, Gohberg, Semencul, Krupnik, Ben-Artzi, Shalom, Labahn, Rodman and others. Special attention is paid to symmetric, skewsymmetric and hermitian Toeplitz matrix inverses and the question whether such a matrix can be retrieved from a single column. (C) 2002 Published by Elsevier. Science Inc.
引用
收藏
页码:199 / 212
页数:14
相关论文
共 50 条
  • [21] Bounds for inverses of triangular toeplitz matrices
    Berenhaut, KS
    Morton, DC
    Fletcher, PT
    SIAM JOURNAL ON MATRIX ANALYSIS AND APPLICATIONS, 2005, 27 (01) : 212 - 217
  • [22] Toeplitz Matrix Reconstruction Algorithm for Rectangular Hollow Array
    Wei, Zihui
    Zhou, Jingyi
    Dai, Chenkai
    Wang, Lunsha
    Kong, Xiangjie
    Dong, Peng
    INTERNATIONAL JOURNAL OF ANTENNAS AND PROPAGATION, 2024, 2024
  • [23] Accelerating Sparse Reconstruction for Fast and Precomputable System Matrix Inverses
    Reeves, Stanley J.
    COMPUTATIONAL IMAGING IX, 2011, 7873
  • [24] Controlled approximation for the inverses of special tridiagonal Toeplitz and modified Toeplitz matrices
    C. Bruni
    S. Vergari
    CALCOLO, 2003, 40 : 149 - 161
  • [25] Controlled approximation for the inverses of special tridiagonal Toeplitz and modified Toeplitz matrices
    Bruni, C
    Vergari, S
    CALCOLO, 2003, 40 (03) : 149 - 161
  • [26] TOEPLITZ-PLUS-HANKEL BEZOUTIANS AND INVERSES OF TOEPLITZ AND TOEPLITZ-PLUS-HANKEL MATRICES
    Rost, Karla
    OPERATORS AND MATRICES, 2008, 2 (03): : 385 - 406
  • [27] GENERALIZED INVERSES OF HANKEL AND TOEPLITZ MOSAIC MATRICES
    HEINIG, G
    LINEAR ALGEBRA AND ITS APPLICATIONS, 1995, 216 : 43 - 59
  • [28] INVERTIBILITY AND INVERSES OF TOEPLITZ PLUS HANKEL OPERATORS
    Didenko, Victor D.
    Silbermann, Bernd
    JOURNAL OF OPERATOR THEORY, 2017, 78 (02) : 293 - 307
  • [29] Explicit eigenvalues and inverses of several Toeplitz matrices
    Yueh, Wen-Chyuan
    Cheng, Sui Sun
    ANZIAM JOURNAL, 2006, 48 : 73 - 97
  • [30] Explicit formulas for the inverses of Toeplitz matrices, with applications
    Inoue, Akihiko
    PROBABILITY THEORY AND RELATED FIELDS, 2023, 185 (1-2) : 513 - 552