Adaptive Fuzzy Moving K-means Clustering Algorithm for Image Segmentation

被引:1
|
作者
Isa, Nor Ashidi Mat [1 ]
Salamah, Samy A. [1 ]
Ngah, Umi Kalthum [1 ]
机构
[1] Univ Sains Malaysia, Sch Elect & Elect Engn, Perai 14300, Penang, Malaysia
关键词
Fuzzy moving k-means; adaptive moving k-means; fuzzy k-means; adaptive fuzzy moving k-means; image segmentation; clustering;
D O I
暂无
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Image segmentation remains one of the major challenges in image analysis. Many segmentation algorithms have been developed for various applications. Unsatisfactory results have been encountered in some cases, for many existing segmentation algorithms. In this paper, we introduce three modified versions of the conventional moving k-means clustering algorithm called the fuzzy moving k-means, adaptive moving k-means and adaptive fuzzy moving k-means algorithms for image segmentation application. Based on analysis done using standard images (i.e. original bridge and noisy bridge) and hard evidence on microscopic digital image (i.e. segmentation of Sprague Dawley rat sperm), our final segmentation results compare favorably with the results obtained by the conventional k-means, fuzzy c-means and moving k-means algorithms. The qualitative and quantitative analysis done proved that the proposed algorithms are less sensitive with respect to noise. As such, the occurrence of dead centers, center redundancy and trapped center at local minima problems can be avoided. The proposed clustering algorithms are also less sensitive to initialization process of clustering value. The final center values obtained are located within their respective groups of data. This enabled the size and shape of the object in question to be maintained and preserved. Based on the simplicity and capabilities of the proposed algorithms, these algorithms are suitable to be implemented in consumer electronics products such as digital microscope, or digital camera as post processing tool for digital images.
引用
收藏
页码:2145 / 2153
页数:9
相关论文
共 50 条
  • [21] A k-means clustering algorithm initialization for unsupervised statistical satellite image segmentation
    Rekik, Ahmed
    Zribi, Mourad
    Benjelloun, Mohammed
    ben Hamida, Ahmed
    [J]. 2006 1ST IEEE INTERNATIONAL CONFERENCE ON E-LEARNING IN INDUSTRIAL ELECTRONICS, 2006, : 11 - +
  • [22] Dynamic particle swarm optimization and K-means clustering algorithm for image segmentation
    Li, Haiyang
    He, Hongzhou
    Wen, Yongge
    [J]. OPTIK, 2015, 126 (24): : 4817 - 4822
  • [23] Brain Image Segmentation Based on Firefly Algorithm Combined with K-means Clustering
    Capor Hrosik, Romana
    Tuba, Eva
    Dolicanin, Edin
    Jovanovic, Raka
    Tuba, Milan
    [J]. STUDIES IN INFORMATICS AND CONTROL, 2019, 28 (02): : 167 - 176
  • [24] Medical image segmentation using K-MEANS clustering and improved watershed algorithm
    Ng, H. P.
    Ong, S. H.
    Foong, K. W. C.
    Goh, P. S.
    Nowinski, W. L.
    [J]. 7TH IEEE SOUTHWEST SYMPOSIUM ON IMAGE ANALYSIS AND INTERPRETATION, 2006, : 61 - +
  • [25] Adaptive predictor with dynamic fuzzy K-means clustering for lossless image coding
    Kau, LJ
    [J]. PROCEEDINGS OF THE 12TH IEEE INTERNATIONAL CONFERENCE ON FUZZY SYSTEMS, VOLS 1 AND 2, 2003, : 944 - 949
  • [26] Image segmentation using K-means clustering, Gabor filter and moving mesh method
    Shi, Hongjian
    Lee, Wan-Lung
    [J]. IMAGING SCIENCE JOURNAL, 2021, 69 (5-8): : 407 - 416
  • [27] RANKED K-MEANS CLUSTERING FOR TERAHERTZ IMAGE SEGMENTATION
    Ayech, Mohamed Walid
    Ziou, Djemel
    [J]. 2015 IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING (ICIP), 2015, : 4391 - 4395
  • [28] Efficient image segmentation and implementation of K-means clustering
    Deeparani, K.
    Sudhakar, P.
    [J]. MATERIALS TODAY-PROCEEDINGS, 2021, 45 : 8076 - 8079
  • [29] Infrared Image Segmentation Algorithm Using Histogram-Based Self-adaptive K-means Clustering
    Zhao, Zhiqiang
    Ling, Xin
    Wu, Jian
    Rui, Xiaoyong
    [J]. PROCEEDINGS OF THE 2015 5TH INTERNATIONAL CONFERENCE ON COMPUTER SCIENCES AND AUTOMATION ENGINEERING, 2016, 42 : 682 - 688
  • [30] Research on k-means Clustering Algorithm An Improved k-means Clustering Algorithm
    Shi Na
    Liu Xumin
    Guan Yong
    [J]. 2010 THIRD INTERNATIONAL SYMPOSIUM ON INTELLIGENT INFORMATION TECHNOLOGY AND SECURITY INFORMATICS (IITSI 2010), 2010, : 63 - 67