Deep CNN-Based Method for Segmenting Lung Fields in Digital Chest Radiographs

被引:3
|
作者
Kaur, Simranpreet [1 ]
Hooda, Rahul [2 ]
Mittal, Ajay [1 ]
Akashdeep [1 ]
Sofat, Sanjeev [2 ]
机构
[1] Panjab Univ, UIET, Chandigarh, India
[2] PEC Univ Technol, Chandigarh, India
关键词
Lung Field Segmentation (LFS); Convolutional Neural Network (CNN); Deep learning; Chest radiography; ACTIVE SHAPE MODEL; SEGMENTATION;
D O I
10.1007/978-981-10-5780-9_17
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Lung Field Segmentation (LFS) is an indispensable step for detecting austere lung diseases in various computer-aided diagnosis. This paper presents a deep learning-based Convolutional Neural Network (CNN) for segmenting lung fields in chest radiographs. The proposed CNN network consists of three sets of convolutional-layer and rectified linear unit (ReLU) layer, followed by a fully connected layer. At each convolutional layer, 64 filters retrieve the representative features. Japanese Society of Radiological Technology (JSRT) dataset is used for training and validation. Test results have 98.05% average accuracy, 93.4% average overlap, 96.25% average sensitivity, and 98.80% average specificity. The obtained results are promising and better than many of the existing state-of-the-art LFS techniques.
引用
收藏
页码:185 / 194
页数:10
相关论文
共 50 条
  • [21] An Improved CNN-Based Pneumoconiosis Diagnosis Method on X-ray Chest Film
    Zheng, Ran
    Deng, Kui
    Jin, Hai
    Liu, Haikun
    Zhang, Lanlan
    [J]. HUMAN CENTERED COMPUTING, 2019, 11956 : 647 - 658
  • [22] Deep CNN-based local dimming technologys
    Zhang, Tao
    Wang, Hao
    Du, Wenli
    Li, Meng
    [J]. APPLIED INTELLIGENCE, 2022, 52 (01) : 903 - 915
  • [23] Automated lung segmentation in digital lateral chest radiographs
    Armato, SG
    Giger, ML
    Ashizawa, K
    MacMahon, H
    [J]. MEDICAL PHYSICS, 1998, 25 (08) : 1507 - 1520
  • [24] A CNN-based vortex identification method
    Liang Deng
    Yueqing Wang
    Yang Liu
    Fang Wang
    Sikun Li
    Jie Liu
    [J]. Journal of Visualization, 2019, 22 : 65 - 78
  • [25] A CNN-based vortex identification method
    Deng, Liang
    Wang, Yueqing
    Liu, Yang
    Wang, Fang
    Li, Sikun
    Liu, Jie
    [J]. JOURNAL OF VISUALIZATION, 2019, 22 (01) : 65 - 78
  • [26] Ensemble Method of Lung Segmentation in Chest Radiographs
    Narayanan, Barath Narayanan
    De Silva, Manawduge Supun
    Hardie, Russell C.
    Ali, Redha
    [J]. PROCEEDINGS OF THE 2021 IEEE NATIONAL AEROSPACE AND ELECTRONICS CONFERENCE (NAECON), 2021, : 382 - 385
  • [27] Application of the Deep CNN-Based Method in Industrial System for Wire Marking Identification
    Szajna, Andrzej
    Kostrzewski, Mariusz
    Ciebiera, Krzysztof
    Stryjski, Roman
    Wozniak, Waldemar
    [J]. ENERGIES, 2021, 14 (12)
  • [28] CNN-based Method for Lung Cancer Detection in Whole Slide Histopathology Images
    Saric, Matko
    Russo, Mladen
    Stella, Maja
    Sikora, Marjan
    [J]. 2019 4TH INTERNATIONAL CONFERENCE ON SMART AND SUSTAINABLE TECHNOLOGIES (SPLITECH), 2019, : 120 - 123
  • [29] CNN-based Deep Learning Model for Chest X-ray Health Classification Using TensorFlow
    Tobias, Rogelio Ruzcko
    De Jesus, Luigi Carlo M.
    Mital, Matt Ervin G.
    Lauguico, Sandy C.
    Guillermo, Marielet A.
    Sybingco, Edwin
    Bandala, Argel A.
    Dadios, Elmer P.
    [J]. 2020 RIVF INTERNATIONAL CONFERENCE ON COMPUTING & COMMUNICATION TECHNOLOGIES (RIVF 2020), 2020, : 192 - 197
  • [30] Deep CNN-based Pedestrian Detection for Intelligent Infrastructure
    Tarchoun, Bilel
    Jegham, Imen
    Ben Khalifa, Anouar
    Alouani, Ihsen
    Mahjoub, Mohamed Ali
    [J]. 2020 5TH INTERNATIONAL CONFERENCE ON ADVANCED TECHNOLOGIES FOR SIGNAL AND IMAGE PROCESSING (ATSIP'2020), 2020,